Reflections – 2017

Following some important developments, I think it’s fair to say that the past year has hopefully marked an appreciable turning point for my astrophotography.  Reflections is a summary of my astronomy last year, in particular astrophotography, as well as some thoughts about how I hope to progress in the 2018.

I’m again pleased that there is continuing interest in Watch This space (Man) – A personal discovery of the Universe through astronomy and astrophotography.  This is a personal journey and I’m glad to see there is also regular activity in many of the older blogs, which altogether illustrate what I expect many others have experienced during their own personal journeys? For those starting out or with related interests, I hope they will find these pieces interesting, instructive and perhaps even inspiring; it’s not an easy hobby but when it works – it usually does with patience, perseverance and help from the wider community –  the experience is  very rewarding, often exciting and mostly fun.

I’m aware that many of my blogs can sometimes be on the long side, that’s because I want to thoroughly document and discuss the matters rather than superficially comment on them.  However, I am mindful that from time-to-time there are issues that can best be covered in a more concise manner or just events that speak for themselves and can therefore be brief, for which purpose I have now introduced the AstroBites section.  Unfortunately, despite the best of intentions, I’ve so far only used this item occasionally but hopefully will rectify the situation next year.

I’m always tinkering with the website, so even if you’re a regular visitor take a look around from time-to-time.  There is a photo gallery but for a simpler view of some of my better images I’ve recently added a FLICKR album, which is accessible from the Gallery menu.  The sharp eyed may also note that in response to new imaging techniques, I have changed the image and technical details summary for each picture; I find this information invaluable when looking at other astrophotographer’s images, as it can be very helpful when starting out in general or when using similar equipment or imaging the same object for the first time.

Once again the site attracted much interest from all corners of the world, which are summarised in the map below.  Please do get in touch if you have and relevant thoughts, queries or just to say – hello – contact details are in the ABOUT section of the main menu.

WTSM Heat Map

Reflections Crop


After overcoming some major technical problems that almost brought my nascent hobby to a premature end in 2016, I felt I needed to consider what would be the best way forwards thereafter.  My initial inclination was a larger telescope in order to get at those faint fuzzies but most of all I just wanted better quality images.  In the past this would inevitably result in acquiring a CCD mono camera and all that means in terms of very exacting technical issues and very long exposures, neither of which I was prepared to take on, or at least only to a degree – life’s too short and the UK weather too cloudy!

However, during the latter part of 2016 something of a game changer was emerging in the world of astrophotography and after following developments online for a few months, I was persuaded that the new ZWO1600MM-Cool mono camera could also give me what I wanted, without many of the issues of a conventional CCD camera.  As a result I purchased the aforesaid camera and matching x8 EFW just before Christmas in 2016  and eagerly awaited clear skies in the New Year.  Unfortunately it wasn’t that simple – now there’s a surprise!

The crucial benefits of the new CMOS based ZWO camera are three-fold: (i) very low read noise and high sensitivity achieved with, (ii) relatively short exposures – sometimes as little as 30 to 60 seconds, (iii) larger field-of-view compared to a CCD. Wow!  Unfortunately there was still much to sort out, notably the image train, image capture and processing, all of which differ considerably from a DSLR camera.  Notwithstanding, eventually first light (see image below) was achieved in March and it was immediately obvious that this was going to fulfil my astrophotography dreams and more for now – hopefully!

Picture saved with settings embedded.

Rosette Nebula in Ha | William Optics GT81 + ZWO ASI 1600MM-Cool & 0.80 focal reducer guided | 15 x 180 secs + darks & bias calibration Gain 300, Offset 10 | 21st March 2017

Using mostly narrowband filters – more on that later – I was initially able to obtain some exciting and very promising images of classic HII-region objects just before they disappeared over the western horizon; thereafter followed weeks of frustration whilst I waited for other suitable objects to appear – timing is everything.  The ZWO1600 camera is very good for most deep sky objects, nebulae, galaxies and globular clusters but with the William Optics GT81 the combination is best suited to larger targets.  As a result by late winter and early spring, when smaller objects such as galaxies dominate the night sky, it became necessary to find something else to do for the next few months.

Aurora Borealis Northern Norway February 2017 I’ve previously worked north of the Arctic Circle in Sweden and Russia but in February I took a more relaxed ferry trip along the west and north coast of Norway from Bergen to Kirkenes, close to the Russian border.  Given the time of year it was of course very cold and the nights long but the ship was comfortable and the scenery spectacular.  However, once north of Tromsø the real show began in the form of the Aurora Borealis AKA the Northern Lights.  This natural light show lived up to expectations and with some difficulty I managed to obtain numerous images of the spectacle – the problem being imaging from a moving ship in severe cold, which with wind chill was well below -20oC – but it was worth it and made for an exciting end to my winter astrophotography.

No Date Type* Object Name
1 20/01/17 DSLR M45 Pleiades
2 20/01/17 N NGC 2244 Rosette Nebula
3 22/01/17 DSLR M45 Pleiades
4 22/01/17 N IC 434 Horsehead & Flame Nebula
5 21/03/17 N NGC 2244 Rosette Nebula
6 21/03/17 B M65 Leo Triplet
7 24/03/17 B NGC 4874 Coma Cluster
8 25/03/17 N M42 Orion Nebula
9 27/03/17 N IC 434 Horsehead Nebula

Record of quarterly photographic images taken in 2017

*Type: DSLR colour, B Broadband LRGB, N Narrowband Ha-OIII-SII, V Video


The period from April until the end of July can be a frustrating time of the year for astronomers, except those with an interest and the equipment for solar imaging.  Other than just giving up for a while, the secret is to abandon normal pursuits and just make the best of whats on offer, which is exactly what I did this year.  After limited success  attempting some of the larger galaxies in early Spring, I moved on to webcam imaging Jupiter and Saturn, insofar as is possible with my small telescope.  At about this time I also managed to capture the comet C/2015 V2 (Johnson), my second one after previously imaging C/2014 Q2 Comet Lovejoy in early 2015.  As I had not attempted such objects for more than two years and was more than a bit rusty with the different imaging and processing techniques, the results were varied but is was still good fun, which I hope to repeat in 2018 depending on what’s around at the time.

I also used the much improved weather and extra spare time afforded to go over the basics of my mount-telescope-computer set-up: balance, leads, equipment alignment, computer updates etc.  I inspected and replaced some old cables, wherever possible using cold-resistant silicon leads.  Following last year’s catastrophic camera power lead failure, I am now aware of the damage that cold can do to cables and pay greater attention in order to avoid repeating such problems.  I was also aware that with the change to the ZWO camera and using autoguiding routinely there had been a noticeable increase in cables, which I therefore tidied and strapped with Velcro bands to restrict unnecessary movement and snagging.

IMG_20170324_194502542 (Medium) The overall impact of these changes has transformed my working practices, making set-up and dismantling quicker, more efficient and more effective, itself a huge improvement.  In addition, I’ve also been able to move the mount and image capture controls indoors, which being more convenient and comfortable has made operating conditions and results much better.  Astrophotography inevitably becomes more complex and working in a warm environment with access to a cup of tea really does improve the outcome when working, in particular when resolving problems.  Given the significant benefits achieved from this housekeeping, in the future I intend to repeat this exercise each summer – it really pays off.

Veil SHO GxCcropHub

Eastern Veil Nebula in SHO – for Will| 21st June 2017

Notwithstanding these virtues, by June I was eager to start imaging again with the ZWO1600MM-Cool and with good weather and some very late nights I was able to obtain a few narrowband subs of the Eagle and North America nebulae.  To my surprise on the morning of 21st June I even briefly managed to image the Eastern Veil Nebula in narrowband; who would have thought imaging the Veil on the Summer Solstice?  Once again the results of just a few subs from the new camera continued to show great promise.

No Date Type* Object Name / Type
10 02/04/17 B NGC 2903 Galaxy
11 02/04/17 B M61 Galaxy
12 18/04/17 B NGC 4438 Markarian’s Chain
13 14/0517 V Jupiter Video Sequence
14 25/05/17 V Jupiter Video Sequence
15 26/05/17 DSLR Comet C/2015 V2
16 11/06/17 V Saturn Video Sequence
17 14/06/17 V Jupiter Video Sequence
18 19/06/16 N M20 Eagle Nebula
20 20/06/17 N NGC 7000 North America Nebula
21 21/06/17 N NGC 6992 Eastern Veil Nebula


After a taste of the ZWO1600MM-Cool at the start of the year and briefly around the Summer Solstice, the end of July finally brought the return of astronomical darkness, more suitable DSO targets and at last the opportunity to get serious with narrowband and broadband imaging.  Combined with some exceptionally good weather and clear skies this period was very productive and successful.  Without plate solving the maximum imaging time I can achieve at the moment is about two hours before or after the Meridian but using a high Gain of 300, 180 second exposures and autoguiding, for the first time I was able to get some very decent subs of various nebulae – now it was really getting exciting!

At the time of purchase I wavered between the ZWO EFW x5 filter or the soon to be released alternative x8 version and in the end waited for the larger version, together with the matched LRGB, Ha, OIII and SII filter bundle.  There were initial problems controlling the EFW and camera, inevitably resolved after some time with a new driver code but in the end the x8 EFW and camera have proved to be an excellent combination.  I have especially found narrowband imaging to be a revelation and when possible have so far mostly concentrated on this technique; its use when the Moon is about is an added and somewhat pleasing bonus.  The detail shown in Ha-subs can often be quite spectacular and for the best results I’ve discovered that more aggressive stretching is needed.

Picture saved with settings embedded.

To my surprise, I’ve so far found LRGB broadband imaging more difficult than expected, both to capture and in post-processing.  It’s apparent that Gain and Offset settings are more critical than narrowband, perhaps because such objects tend to be brighter, with more contrast and often greater complexity?  I had been looking forwards to imaging the Andromeda Galaxy in LRGB and as is often the case with M31, first thought that my subs were overblown.  However, after dialling down Gain, Offset and exposure time the alternative result was even more disappointing.  It was instructive that by returning to the original data and applying greater care during processing, I was able to tease a good image from the subs after all.

No Date Type* Object Name / Type
22 27/07/17 N M20 Trifid Nebula
23 31/07/17 N NGC 6960 Western Veil Nebula
        & Pickering’s Triangle
24 10/08/17 N IC 5070 Pelican Nebula
25 11/08/17 N IC 1318 SADR Region
26 11/08/17 N NGC 6888 Crescent Nebula
27 13/08/17 DSLR Perseids  
28 19/08/17 N NGC 6995/ NGC 6992 Eastern (Bat) Veil Nebula
29 20/08/17 B M15 Globular Cluster
30 27/08/17 N NGC 7000 North America Nebula
31 28/08/17 B M31 Andromeda Galaxy
32 28/08/17 B M33 Pinwheel Galaxy
33 15/09/17 DSLR Milky Way  


From the experience of the new camera to-date I had arrived at two critical questions:

  • What are ‘right’ Gain and Offset settings?
  • What are the ‘best’ methods for LRGB imaging and post-processing?

Imaging during the final quarter then turned out to be something of a mixed bag trying to answer these questions.

I have a general feel about Gain, Offset and the related ADU values but if I’m honest despite reading around the subject I’m still mainly in the dark – no pun intended!  Such are the new challenges posed for all by the features of the ZWO1600MM-Cool it seems to me that even after 12 months the jury remains out over the answer to the first question – so it’s not just me!

The manufacturer provides value guidelines but based on experience, three schools of thought seem to have emerged from users:

  • Use Unity Gain 139 setting and vary exposure times – longer for nebulae, shorter for brighter objects such as M31;
  • Use low Gain for bright objects and higher Gain for faint objects + short and longer exposures, mindful of achieving a relevant ADU level across the resulting sub;
  • Use very high Gain and take lots and lots of short to moderate exposures.

I’m still experimenting with each of these techniques but increasingly lean towards higher Gain and varied exposure times of between 60” and 300”.  I have certainly found that lower Gain and short exposures didn’t work well for me when applied to the Andromeda Galaxy and California Nebula.

One issue when taking shorter exposures with the ZWO camera compared to a CCD is that many more subs are required, which inevitably needs very large storage and processing memory requirements – it’s a small price to pay for such quality and other advantages.  My laptop was already well specced for processing, with an Intel i7 64 bit chip 16GB RAM and to store the extra data I purchased a 4Tb external hard disc at a very reasonable cost = problem solved.

Picture saved with settings embedded.Like most people M42 has long been one of my favourites but like M31 I’m still struggling achieve a decent broadband image with the new camera and M45 is a similar problem; there’s nothing wrong with the camera, I just haven’t mastered the technique required yet.  However  narrowband images of M42, the Horsehead and Monkey Head nebulae all worked well at my standard default used of Gain 300 and Offset 10.

In preparation for further experimentation, at the beginning of  November I took time to compile a more comprehensive calibration library at various Gain, Offset and exposure settings.  Like most CCD cameras the new ZWO camera incorporates cooling to -45oC below ambient in order to reduce noise that is associated with all photoelectric sensors; I have been using the camera at a nominal temperature of -20oC.  By having such control it is therefore possible to obtain the aforementioned calibration frames irrespective of the ambient temperature and at any time.  Since June I’d already been successfully using another calibration set which has saved considerable time during each imaging session, unlike DSLR imaging which generally has to be undertaken at the same time + every time to ensure the same conditions.

Passing Shot: I’m posting Reflections later than usual this year having just returned from a protracted trip to New Zealand over the Christmas and New Year period.  The night sky down under was spectacular and I managed some good widefield imaging using a basic DSLR and tripod set-up; more on astronomy in New Zealand at a later date – Watch This Space Man! In the meantime below is a taster of the results taken whilst staying at my daughter and son-in-law’s house in Ohaupo, North Island.  Other than the beautiful Milky Way itself, note the Southern Cross just above the roof line and especially the large and Small Magellanic Clouds.

IMG_9984 (Large)

No Date Type Object Name / Type
34 12/10/17 B M31 Andromeda Galaxy
35 13/10/17 N NGC 1499 California Nebula
36 28/10/17 B NGC 2174 Monkey Head Nebula
37 28/10/17 B IC 434 Horsehead Nebula
38 30/10/17 B M45 Pleiades
39 30/10/17 B M42 Orion Nebula
40 01/11/17 N NGC 1499 California Nebula
41 13/11/17 DSLR Jupiter-Venus Conjunction
42 25/11/17 B NGC 1333 Reflection Nebula / Perseus
43 26/11/17 N NGC 2264 Cone Nebula


Once again my astronomy year was often shaped by other events and related matters.  Throughout the first quarter I completed an online MOOC course at Edinburgh University on the Higgs Boson and Particle Physics hosted by a wide variety of relevant experts, including no less than Peter Higgs himself.  It’s relevance to astronomy only came right at the end but was well worth waiting for.  Based on the theories of particle physics, the Higgs Boson, scalar fields and inflation, cosmologist Professor John Peacock ably demonstrated:

  • There was no Big Bang;
  • The existence of a multiverse – of which our Universe is but a part.

Intuitively I’ve long wondered about such possibilities and Professor Peacock’s lectures were by far the most convincing case I have seen for such a model.  Of course the implications of these conclusions are  profound and I’ve continued to think about this for the rest of the year.

As previously reviewed, for two weeks in February it was my good fortune to sail along the Norwegian coastline on the Richard With, flagship of the Hurtigruten ferry line.  At this time of the year it was very, very cold being mostly north of the Arctic Circle and the weather can be rough at times but overall the journey was outstanding.  Like most, my personal goal was to see and image the Aurora Borealis, which I was successful in doing on a number of evenings.  However, it’s got to be said that such imaging from a moving ship at -20C is both difficult and very uncomfortable.  Whilst I was pleased with the photographs, next time I’d prefer to be on land, where it should be so much easier.

Inspired both by the aforementioned trip and meeting a fellow geologist on board the Richard With who worked as a guest speaker on other cruises, I subsequently attended an audition to lecture myself on astrophotography.  Whilst my talk was successful and I was chosen to join the agency’s list of speakers, I have yet to be asked to join a cruise.

Favourite Images

With only a few exceptions, the outcome of my astrophotography in 2017 reflects the transition that took place from DSLR to the ZWO1600MM-Cool mono CMOS sensor camera.  The new camera has in every sense been a game changer and the resulting images have shown just how much colour and detail can be achieved in both broadband and especially narrowband.  Some of my personal favourites taken during the year are shown below, in no particular order:

Aurora Borealis-2 Northern Norway February 2017


NGC 2244 SHO Final1

Picture saved with settings embedded.

SHO Final

Eastern Veil Nebula detail in Bicolour 19th August 2017

Western Veil Nebula (Witch's Broom & Pickerings Triangle) in Ha-OIII Bicolour July 2017.jpg

MiIky Way Isle of Purbeck Dorset September 2017




Cygnus Wall BiCol FINAL

Above Images (from top-to-bottom): Aurora Borealis off Norwegian Coast – DSLR; Leo Triplet – LRGB; Rosette Nebula – SHO; Flame & Horsehead Nebulae – Ha; Eastern Veil Nebula – SHO; Eastern Veil Detail – Bi-Colour; Western Veil Nebula & Pickering Triangle – Bi-Colour; Milky Way from Isle of Purbeck, Dorset – DSLR; Andromeda Galaxy – LRGB; California Nebula – form left-to-right, Ha-SHO-Bi-Colour; North America Nebula – SHO; Cygnus Wall – Bi-Colour 

Round-up & goals for 2017

Since resolving a number of critical issues in 2016 and finally getting to grips with autoguiding, I’m pleased to say the basic processes worked very well in 2017.  In addition to improvements in the set-up, being able to operate from indoors has greatly improved both working conditions and the results.  Not surprisingly my astrophotography last year was dominated by learning and using the new camera.  Whilst the experience of DSLR imaging and related matters was helpful, I was surprised at just how different working with a mono camera, filters and especially processing has been by comparison and I’m still learning.  Some of the minutiae can be very important and are frustratingly easy to miss but, with the assistance of those ever helpful astronomers online and perseverance the results are really starting to show in my work.



Goal Specifics / Results Outcome
Improve processing After some set-backs now successfully processing FITS files in DSS and compiling broadband and narrowband images in Photoshop – all very different to DSLR RAW! Noticeable improvements using more complex techniques in PS.



Expand & Improve Widefield Imaging For the first time I obtained some decent images of the Milky Way but otherwise barely used the Vixen Polarie and did not make it to any other dark sky sites – disappointing.   FAILED


Start LRGB  imaging Now using the ZWO1600MM-Cool mono camera + EFW with LRGB & Ha- OIII- SII filters with good narrowband and varied broadband results.   GETTING           THERE


I think it helps to set some goals for the forthcoming year, so here goes:

  • Improve processing – more: Despite some noticeable improvements in 2017 there’s always more to learn whichever software is being used. I aspire to working with PixInsight or the newly acclaimed APP but will likely persevere with various more advanced Photoshop techniques.
  • Expand widefield imaging: First – use the Vixen Polarie as had been intended last year to obtain nightscape images at UK dark-site locations. Second – look at ways of using a widefield set-up with the mount.  Having previously failed I’m hoping to be more successful in 2018.
  • Improve broadband and narrowband imaging: In considering how to progress in 2016, I came to the conclusion that the next step should be a move to a mono camera rather than a larger telescope. This has turned out to be a great decision but it’s still early days.  There’s plenty more to learn and finesse but most of all after nearly a year’s learning and experimentation it’s clear that I need to improve one matter above all – increased integration time and this means learning plate solving.  I’ve been very happy using Astro Photography Tool (APT) for FITS image capture, scheduling and filter control (the APT Forum has been very helpful), but I also own the much praised Sequence Generator Pro (SGP) and might switch or at least give it a try in 2018.

I’m very pleased to say 2017 was a very good year for astrophotography, perhaps my best yet, which was especially defined by two positive developments:

  • In general the equipment set-up was much better after some long overdue changes and in particular operating from indoors, once all the basics are completed. With a good basic starting set-up and alignment of the guidescope-autoguiding camera with the main OTA, I’m often able to just quickly refresh EQASCOM alignment models directly from the computer = no more crawling around on the ground in the dark, or at least very little!
  • Although it’s still early days and despite my reservations over the complexity (which is true) of using a mono camera and filters, it’s revolutionised and revitalised my imaging and therefore proved very worthwhile. It is a lot of fun and the improvement of my images has been both exciting and very fulfilling.

You can’t ask for more than that and holds much promise for the coming year, which I hope to record in WTSM’s Reflections at the end of 2018.

Watch this space!


The ones that got away:  Imaged but not seen in WTSM this year (warts and all)

NGC 2174 281017

Pleiades 301017

Picture saved with settings embedded.

M15 Crop 200817

Above Images (from top-to-bottom): M42 Bi-Colour, Ha & SHO; Monkey Head Nebula Bi-Colour; Crescent Nebula SHO & Bi-Colour; Pleiades LRGB; Sadr Region Ha; M15 Globular Cluster LRGB    


AstroBites-3: Conjunction

IMG_8848 (Large)

I was up early this morning in order to view and image the rare visual conjunction of Jupiter and Venus.  Unfortunately I cannot see the eastern horizon from here but from the top of Redhill Common adjacent to Fairvale Observatory there is an excellent view and just before 6.30 a.m. I climbed to experience the spectacle.

Following a cold, clear night the early morning weather was excellent and I was able to obtain a number of images as well as a good view using binoculars.  It was a short but worthwhile event, as shortly after 6.50 a.m., with growing brightness from the impending sunrise due at 7.14 a.m., the view of the conjunction was soon lost.  The next Jupiter–Venus conjunction will be on 30th April 2022, so time to recover!

IMG_8853 (Large)

AstroBites-2: Home Sweet Home

IMG_8748 FINAL (Large)

From time-to-time I’ve been fortunate to see the Milky Way but due to the lack of dark skies, rarely in the UK.  With a move towards urbanisation taking place throughout the world, light pollution is a major obstacle to such views and astronomy in general and it is only in more remote, unpopulated locations that such sights are now possible.  On such occasions a view of our galaxy from within is always striking and usually memorable. I’ve been fortunate to visit many such remote places but either didn’t look upwards (why not?) or was hindered by the inevitable cloud.  Recently on a trip in 2016 to Arizona and Utah in the South West USA, such views were hampered by the full moon – timing is everything!  However, there have been two occasions when the darkness was so complete that I found the view of the Milky Way to be not only incredible but quiet profound – first in the Kalahari desert in Botswana and subsequently on a scuba diving trip whilst motoring southwards along the middle of the Red Sea at night with the boat’s lights turned off.

Notwithstanding, since my interest in astronomy started a few years ago I have yet to successfully image the Milky Way, which has remained resolutely elusive to my camera sensor.  I have tried a few times at Fairvale Observatory but the night sky here at best rates 5 on the Bortle scale and makes such imaging almost impossible.  Then whilst in the Arizona desert last year (see above) and on other occasions I have been thwarted by a full moon.  Apart from the obvious problem of light pollution I was beginning to wonder if I was doing something wrong but no, it was the sky conditions.

Finally during September this year, whilst camping in Dorset on the Isle of Purbeck just west of Corfe Castle, I at last managed to image the all elusive galaxy – our galaxy (see top of page).  Looking south across the Purbeck hills towards the English Channel, the Milky Way was revealed in all its glory traversing the clear, very dark sky which itself was pierced by the vivid light of the myriad of stars; it is on such occasions I realise just what I’m missing at home.  Once accustomed to the darkness the form and some detail of the Milky Way could be clearly discerned with the naked eye but of course the camera saw a lot more.

Picture saved with settings embedded.

Some processing shows good detail of the Milky Way but at ISO 6400 is too noisy

Using my unmodded Canon 700D DSLR and an ultra wide-angle 10mm lens, for the first time I was able to capture some reasonable images of the Milky Way.  All were shot on a static tripod between 15 and 20 second exposures at ISO 6,400; I had set-up the camera on the Vixen Polarie for tracking but could not obtain a favourable view of the galaxy in this way.  From this experience next time I would reduce the ISO to at least 3,200 or less and increase the exposure time based on the ‘Rule of 500’ to about 30 seconds.  However, for now I’m happy with the result and hope the next opportunity doesn’t take another  lifetime coming.

Planetary Playtime

SKY Live

Starting out three years ago I inevitably began my astrophotography with the Solar System, the planets and other related bodies are after all closest to Earth but, as it turns out, are far from easy to image.  At the time using a Skywatcher 150PLS and ZWO120MC webcam, I achieved some reasonable images of Saturn, Jupiter, Mars, the Moon and later the Sun but with plenty of upside potential for improvement! Shortly thereafter having acquired my current set-up, I realised that my interest lay in DSO targets and, except for the lunar eclipse in 2015 and the odd white-light image of the Sun, have mostly ignored the Solar System, until now.  Currently no less than 7 planets are present throughout the night at the moment, the largest of which provide good viewing and imaging opportunities – planetary sky above for 11th June 2017 at 11 p.m. taken from

From April to July there are limited DSO opportunities for my scope and camera and the only choice is to look elsewhere; the absence of astronomical darkness also doesn’t help.  This year the problem has been particularly frustrating as I’m itching to get to grips with my new ZWO 1600MM-Cool camera, which after a few hurried shots early in the year proved very exciting.  And so I’ve recently been playing around, returning to old subjects and unfamiliar equipment – first imaging the comet C/2015 V2 (Johnson) and again trying my hand again at some of the planets.

Unlike the DSLR and ZWO 1600MM-Cool CMOS camera, I the ZWO 120MC video based webcam is more suitable for the planets, which poses a whole new set of issues and the use of completely different capture and process software, in my case Firecapture for imaging and Registax for processing. Both are excellent free programmes but after three years required some re-learning.

Firecapture helps a lot when experimenting to find the best gain, gamma and exposure settings for each planet but there are still other difficult tasks to overcome, in particular planetary rotation, size, seeing conditions and my personal nemesis – focus – which after numerous attempts I have still failed to master. The truth is that even with the gas giant Jupiter, the planet appears quite small with the 81mm aperture of my Williams Optics refractor and detail is difficult to make out in order to focus when also blurred by atmospheric turbulence.  Notwithstanding, the belts and even the Great Red Spot are evident in the resulting images taken between 14th and 25th June, albeit a little fuzzy!

Webcam image data capture even over a couple of minutes is prodigious and requires significant processing capacity to handle.  I have found the aptly named Castrator software useful in this regard to cut the final AVI image down to the actual size of the planetary object, thus removing substantial areas of superfluous black sky.  Registax is equally powerful for video processing and stacking, in particular the intriguingly named Wavelets, which magically help restore detail and sharpness.


In the case of Saturn, which at the moment is quite bright and well orientated, the problem is also size and especially seeing, in my case not helped by a 35 minute imaging window as the planet transits between two trees at the end of my garden; at least the large copper beech on the left blocked out the Moon at the same time! At this location Saturn is less than 15o above the southerly horizon and as a result seeing conditions are at best poor and usually bad.  However, I manged some blurred images that clearly show Saturn’s rings and even a little colour.  I’m now looking forwards to seeing more of the final Cassini mission images before the satellite crashes into the plant in September.

These are obviously not my best images and I already feel the need try again next year, hopefully with a more appropriate telescope (Santa has already been informed). Notwithstanding, my return to the Solar System has been fun and, in between imaging I’ve also taken time to carry out observational astronomy – something I rarely do nowadays being otherwise consumed by astroimaging paraphernalia.  DSO astrophotography is likely to remain my main interest in the future and I can’t wait to revisit old favourites later in the year with the new ZWO 1600MM-Cool camera.  In the meantime, I have renewed respect for the planetary astrophotographer’s, I’ll be back another time.


Playing poker with the heavens


It’s that time of the year when Earth ploughs its way through the tail of comet Swift-Tuttle, resulting in a the Perseids meteor shower. The name is derived from the location of the radiant point within the constellation of Perseus and Greek mythology’s reference to the sons of Perseus.  Such are the orbital paths that Earth’s encounter with the comet occurs around 11th to 13th of August each year and can provide an enjoyable spectacle as the meteor particles rain down through atmosphere.


Travelling at some 37 miles-a-second, the sand-grain size particles literally burn up in the blink of an eye, with the energy created producing a bright path of the light path that very briefly shoots across the night sky, sometimes green or red coloured.  Some 16-miles in size, from time-to-time the comet itself actually passes nearby to Earth during its orbit around the Sun, last time being in 1992 and the next in 2126.

Perseid ZHR 2016

Whilst the timing of our annual encounter can be predicted with good accuracy, a sight of each individual meteoroid particle is entirely down to chance.  Over a period of two or three days the frequency (Zenithal Hourly Rate or ZHR) may vary from a few tens to a few hundred, depending on which section of the comet’s tail Earth is passing through. Of course, observation requires a clear sky – something that’s been notably absent here at Fairvale Observatory for some time now.  Notwithstanding, this year there were three consecutive clear, dark, warm nights, which occurred shortly after a new Moon that provided excellent Perseid observing opportunities.

Viewing is a matter of lying back in a suitable garden chair looking up towards the radiant position, which starts in the north east then moves to the south during the night and just waiting.  This year peak Perseids were on the evening of 11th/12th August between about 11pm and 1am, during which time we probably saw between 20 to 40 hits an hour; the previous and subsequent evenings were also quite good, though with slightly less hits.  Such is the randomness of each meteoroid hit that in practice Perseid trails occurred all over the sky and were easy to miss if outside the peripheral vision.  However, overall it was a very good and enjoyable show but probably  not as good as that from the ISS.

IMG_7024 (Medium)

At first this looks great but look again, it’s an aircraft trace – living next to Gatwick airport doesn’t help. The giveaway is in the next shot which shows the track continuing i.e. too long and too far for a meteoroid.

At the same time using the Canon DSLR and an ultra-wide lens, I also attempted to image the Perseid shower.  On the first night using Vixen Polarie tracking, set towards the radiant position and on the second night pointing east, without tracking.  Control was via an intervalometer, with camera settings at ISO 800, 20 or 14 second exposures, and 5-second shot intervals.  Even with such a high incidence of meteoroid hits, obtaining a photograph was still very difficult; mostly the strikes occurred outside the field-of-vision or sometimes in the 5-second pause.  In total I shot over 300 images but obtained just two Perseid hits and more than a few plane tracks!  Even with good preparation and clear skies it really is a case of chance but I was nonetheless pleased to have my share of luck this time and look forwards to another opportunity this time next year, weather permitting.

IMG_7111 (Medium)

Gotcha – the real thing: ISO 800 @ 20 seconds with tracking.


IMG_7303 (Medium) (2)

Only just! This time the Perseid is just sneaking out of view at the bottom of the frame: ISO 800 @ 14 seconds, without tracking.



Unfortunately not my image: Mercury starting its transit across the Sun today, photo by NASA.

The transit of Mercury across the face of the Sun takes place about thirteen times each century and today was one of those occasions; the next is on 11th November 2019.  With months of bad weather I’ve been unable to undertake very little astronomy for some time but albeit late, spring actually arrived last week and I took the opportunity to shake-down my equipment and experiment with settings for solar imaging in the hope of capturing Mercury’s transit.  Using a Baader solar filter and both the William Optics GT 81 and Skywatcher 150PL, I have successfully imaged the Sun before.   Of course, inevitably I aspire to a dedicated Lunt or Coronado solar telescope one day in order to image details of the chromosphere and prominences, which are not visible using a white-light solar filter.

Sun spot activity is limited at the moment but the Baader filter and WO GT81 do a reasonable job, although I find achieving focus of the Sun quite difficult.  Using the DSLR I experimented with the field flattener and an alternative basic 1/ 1.25” nosepiece, which produced a preferable result of a slightly larger and sharper image.  I also tried the ZWO ASI 120MC webcam but as I don’t use this very often struggled to get the settings right for any sort of image – I’ll experiment more with that over the summer. I also put EQMOD-ASCOM and the newly acquired gamepad control through their paces which both worked well, so I was ready for the transit – weather permitting.


Last week’s test image of the Sun, with sun spot top left: WO GT81 + 1.25″ nosepiece | 1 / 2,500 sec @ ISO 100

After days of sunshine, albeit with high cloud that has continued to prohibit astrophotography at night, I was nonetheless hopeful of seeing at least some of the transit today.  Notwithstanding, Sods law arrived in the form of a belt of cloud over south east England last night!  Not to be defeated I watched the sky and cloud forecasts which suggested a glimpse of the transit might still be possible.

In hopeful anticipation I set up the equipment just before contact at 12.12 pm BST and shortly afterwards obtained a good view of Mercury as it started its transit across the face of the Sun. For the next three hours I managed glimpses of the planet as it continued its journey.  It is very, very small but forms a distinct, sharp black dot against the background of the Sun when compared to the more diffuse, grey nature of the sunspots.  It was an exciting experience and despite the drawbacks – cloud has now completely covered the sky for the rest of the transit – it was very enjoyable; so what’s the problem?

Despite all my preparation for imaging everything that could go wrong did and I was unable to obtain even a single photograph:

  • On setting up the camera and starting to focus the EQMOD-ASCOM tracking stopped and Carte du Ciel froze. Despite re-starting the set-up numerous times the tracking would not work!
  • Finally after resorting to the Synscan handset for tracking control, for some completely inexplicable reason I could not get any sort of image on the camera, that otherwise was working OK!

As I have learned many times before, the art of astronomy is patience and persistence but I am very disappointed not to have imaged Mercury during its transit today.  Ironically once the cloud put an end to further activity, I tested the EQMOD-ASCOM tracking once again and it worked fine.  Perplexed does not describe my feelings – oh well, 3-years to prepare for the next transit!


How I felt after today’s imaging!!! The transit view was still very good and I’m grateful for the breaks in the cloud.


180 Degrees

Viewing from Fairvale Observatory is far from ideal but I have no choice and need to make the most of it:

(i) Without going down the garden (which is not practical and would then totally obscure the southerly view) my house blocks the entire northern sky, critically including Polaris;

(ii) We have very high +/-12ft hedges surrounding the garden;

(iii) Directly east is a large house that completely obscures the horizon;

(iv) South east and south are very large trees;

(v) To the west is a wooded hill, thus blocking the horizon in that direction, and

(vi) Some 7-miles to the south is Gatwick Airport which produces significant light pollution, as well as aircraft that regularly fly through my images as well as others from Heathrow, also not far away.

It’s a miracle I am able to undertake any astrophotography and I long for the day I live somewhere with better conditions.

In the meantime I have to make do with the 180o I have available.  For the record and with great skies and good weather, this week I compiled a photo mosaic of the aforesaid view – which illustrates some of the aforementioned problems and is in itself an interesting picture. The scene is stitched together from six DSLR shots that encompass most of the east to west panorama but in order to achieve this, the resulting photograph becomes severely distorted.

The principal view is directly south, with the Meridian pretty much straight ahead.  Low angle viewing and imaging is almost completely impossible but depending on the timing and some crafty shooting, the mid-angle objects can be accessed as they pass between the trees. The best imaging is therefore mostly restricted to a 20o range between about 65o and 85o and within +/- 20o of the Meridian; high angle east and west views are feasible but seeing in these directions is impacted by the greater atmospheric distance through which the light has to travel.

For now this is my night time playground: it is challenging and can be frustrating but with clear skies, preparation and patience it’s good fun and much can still be achieved.

Night sky panorama from Fairvale Observatory + obstacles: the tree on the left is very large +200 year-old copper beech, the coniferous trees  due south are closer to the property boundary - thus increasing their impact   on seeing.  The red line on the left approximately marks the East and the central red line is the Meridian.

180 degree night sky panorama from Fairvale Observatory + obstacles: the tree on the left is a very large +200 year-old copper beech, the coniferous trees due south are closer to the property boundary – thus increasing their impact on seeing. The red line on the left approximately marks the East and the central red line is the Meridian.

Equivalent Cartes du Ceil planetarium view at the same time.

Equivalent Cartes du Ceil planetarium view at the same time.

Canon Koppernigk’s Conjunction

This time of the year is something of a fallow period for astronomers: short nights combined by with the complete absence of astronomical darkness and fewer DSOs.  I have personally found this year more difficult than usual as since April 25th, following an operation to replace my left knee, I have been physically unable to set-up Fairvale Observatory and undertake astronomy of any sort.  Notwithstanding, once over the initial few weeks of pain, I have tried to use the extra time afforded me usefully.


I have been reading Arthur Koestler’s excellent book The Sleepwalkers, which charts the history of man’s understanding of the universe and astronomy.  Speaking of fallow periods, in the book I’m just past the very long period of inactivity and general superstition regarding the cosmos that occurred during the Middle Ages, which followed the more enlightened thinking of the Greeks, particularly Pythagoras; taking account of the Greek’s progress in understanding the Universe, our astronomical knowledge might have been 1,500 years more advanced today were it not for this prolonged medieval hiatus!  Fortunately Copernicus (his better known Latin name) finally initiated what has become today’s heliocentric model of the Solar System, although his seminal work On the Revolutions of the Heavenly Spheres was only published just a few hours before his death after a delay of 30-years, such was his reluctance to put forwards such thoughts at that time.

Next, I have just completed the 6-week AstroTech MOOC course organised by Edinburgh University, which covered the scientific logic behind astronomical discoveries and the technology that lies behind them.  This was my third astronomy MOOC and provided some interesting insight into telescope and imaging technology, as well as filling time during my recovery.

Finally, as my (limited) mobility has slowly started to improve, the night sky has recently provided a fascinating show of its own that did not require the observatory’s paraphernalia and, furthermore, beautifully demonstrated the principles originally outlined by Copernicus in 1543.

During the latter part of June Venus and Jupiter moved inexorably towards very close conjunction by the end of the month.  Reaching just under ¾ of a degree separation on 30th June and 1st July this is a rare event, which with a clear sky could be easily viewed with the naked eye.  Better still, I set out to photograph the two planet’s journey during the preceding 12 days, thus illustrating Copernicus’ revolutions around the sun of these two heavenly spheres.  Whilst any school child will today understand this process, it is a frightening thought that belief in such a mechanism could once have led to the death penalty!

Obscured from view at Fairvale Observatory as Venus was just 17 ½o above the western horizon, I had to travel to a nearby location which provided a clearer westerly viewpoint of both planets at their low attitude.  In order to obtain a series of comparable images and thus show the real spatial changes occurring up to conjunction, all pictures were taken from exactly the same location.  With my Canon EOS 700D fixed on a photographic tripod I shot a series of images over a 50 minute period using either the 18mm or 55mm telephoto settings, playing with ISO and speed settings as darkness progressed; this was roughly the time the two planets took to disappear below the Earth’s horizon after achieving Civil Darkness.

The resulting photographs show Jupiter apparently advancing on Venus before at conjunction ‘passing’ close by on the aforementioned days.  Whilst Jupiter is the third brightest object in the night sky (after the Moon & Venus) and nearly 12 times the size of Venus or 1,400 times by volume, the planet looks very small by comparison to Venus.  This of course is the effect of perspective, with Jupiter currently some 565 million miles distance from Earth, whereas Venus is only 48 million miles; furthermore although at -1.8 the apparent magnitude (brightness) of Jupiter is high, at -4.4 Venus is much brighter.

18th June 2015: Jupiter left, Venus right - trees on the horizon provide a reference scale as the planets move towards each other during the month in subsequent photographs

18th June 2015: Jupiter left, Venus right – trees on the horizon provide a reference scale as the planets move towards each other during the month in subsequent photographs.

25th June 2015 + 7-days

25th June 2015 + 7-days

30th June 2015 + 5 days.  Nothing - dark thunder clouds completely obscure the western sky during conjunction!!!

30th June 2015 + 5 days. Nothing – dark thunder clouds completely obscure the western sky during conjunction!!!

1st July 2015. Bingo = conjunction; though one day later Jupiter has now moved to the right of Venus.

1st July 2015. Bingo = conjunction; though one day later Jupiter has now moved to the right of Venus.

1st July 2015. Close-up of the conjunction using 55mm telephoto setting and ISO 400 - Venus now left & Jupiter right.

1st July 2015. Conjunction close-up using 55mm telephoto setting and ISO 400 – Venus now left & Jupiter right.

Unfortunately I am expecting it will be at least another month before I have recovered sufficiently to consider setting-up Fairvale Observatory again, by which time Astronomical Darkness will thankfully be slowly returning.  In the meantime I’m looking forwards to the next section of The Sleepwalkers which covers Kepler and Galileo and hopefully exciting developments from the New Horizon Pluto fly-by and more from the Rosetta Mission and the re-awakening of its Philea lander.  Given clear skies there should also still be plenty to see without the observatory: The Perseids, Saturn and of course at the centre of our Solar System as determined by Copernicus, the Sun, which will be at aphelion on 6th July – though you wouldn’t think so judging by the high temperatures currently prevailing in the UK and Europe!


Alternative Eclipse

With astronomy preparation is everything and so with the prospect of a solar eclipse here today I have been getting ready during the past week.  I looked at and imaged the Sun using my Skywatcher 150PL and a bespoke solar filter last year.  Whilst I was pleased with the results, such is the field-of-view of the 150PL that the resulting image only covers sections of the Sun and a full picture needs to be created using a mosaic; the upside of this is high magnification and therefore better detail of the Sun’s surface.  With the prospect of an eclipse I wanted to try and image the entire spectacle this time and therefore constructed a new solar filter to fit my William Optics GT81 refractor telescope, which has a wider field-of-view and all together better optics that would comfortably image the entire Sun.

Using Baader AstroSolar ND 5.00 safety film and some cardboard, I constructed a tube which fits exactly over the end of the telescope, with the film across the front but not stretched.  By restricting wavelengths the film removes about 99% of the Sun’s light and allows safe viewing but is very difficult to work with and must be treated carefully to ensure it is not damaged; birds can be attracted to the film’s silver finish and may peck holes in it when fitted, it is therefore important to be aware of such threats and, in my case, I also constructed a cardboard slip to cover the filter when the telescope is left unattended during use.  It is also very important to either block off or remove the guidescope and / or finder from the telescope, which without a filter could otherwise also focus on the Sun and either burn out or even worse, cause personal injury.

Home-made solar filter on the William Optics GT81.  When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

Home-made solar filter on the William Optics GT81. When used I blocked-off the red dot finder and removed the finder scope in order to attach another home-made Sun finder.

The Players: having constructed the filter and with a clear sky on Wednesday I therefore tried it out and furthermore experimented with exposure settings, with good results.  Earlier in the month I had captured an excellent image of the quarter Moon too.  So I was ready to go, right?  Wrong!

The Moon @ First Quarter  | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

The Moon @ First Quarter | WO GT81 & Canon 700D + FF| 1/100th sec @ ISO 100 | 24th February 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter 1/500th sec @ ISO 100 | 18th March 2015

GT81 + Canon 700D & Baader ND 5.00 Solar Filter
1/500th sec @ ISO 100 | 18th March 2015

The Sun 1/20th Sec @ ISO 100 | 18th March 2015

The Sun
1/250th Sec @ ISO 100 | 18th March 2015

Despite my best planning it was cloudy here at Fairvale Observatory this morning, something that has been proving a major obstacle to any astronomy all this month.  Notwithstanding, I have instead experienced an ‘alternative eclipse’.

First, I recorded the change in light during the eclipse.  Though ‘only’ an 85% eclipse here the deterioration in light was very noticeable as well as other features: it got colder and the birds became quieter.

20th March 2015 Eclipse - the sky just after contact at 9.50 a.m.

20th March 2015 Eclipse – the sky at 9.50 a.m. sky just after contact.

Contact + 15 minutes

Contact + 15 minutes

At maximum 85% eclipse.

At maximum 85% eclipse, 9.30 a.m.

Next I ‘looked’ at the progress of the eclipse using Google Sky, which seemed to be very accurate.  It was fascinating to note that four other planets were lined up alongside the Sun at the same time, though of course would not be visible in the daytime sky even if it had been clear.

Eclipse as 'seen' by Google Sky

Eclipse as ‘seen’ by Google Sky

Google Sky screenshot.

Google Sky screenshot.

In between my own real time experience, I watched the BBC coverage of the event which provided some excellent images from the UK and especially from the air off the Faroe Islands where totality occurred.

Uk eclipse courtesy if the BBC.

UK eclipse courtesy if the BBC.

Eclipse totality at 28,000 ft from the Faroe Islands.

Eclipse totality at 28,000 ft from the Faroe Islands.

Baily's beads in hydrogen-alpha image. Faroe Islands March 2015.

Baily’s beads hydrogen-alpha image.   Faroe Islands March 2015.

Diamond Ring hydrogen-alpha image. Faroe Islands March 2015

Diamond Ring hydrogen-alpha image.
Faroe Islands March 2015

An eclipse is astronomy in action and inevitably I’m disappointed not to see and image the actual eclipse here but my alternative eclipse was still interesting and good fun. I was lucky to witness a total eclipse in France in August 1999 so that’s a 50% success rate so far.  The next partial eclipse in the UK will be on 12th August 2026 so I have time to prepare but, of course, will be unable to do anything about the weather again.  Fingers crossed then I suppose!

Another perspective.  Eclipse 2006, taken form the ISS the Moon's shadow passing over Turkey.

Another perspective. Eclipse 2006, taken from the ISS the Moon’s shadow passes over Turkey at 2,000 kph.

Lovejoy Part-2

I first became acquainted with C/2014 Q2 Comet Lovejoy just before Christmas and have since been keen to obtain my own image of the object from Fairvale Observatory; at the time I was fortunate to obtain a photograph of the comet from a fellow astronomer in La Palma.  Despite the comet reaching its best positon on January 7th, some 44 million miles from Earth and with the apparent magnitude (brightness) improving throughout January to less than +4.0, unfortunately nature and life prohibited me from attempting this task: Christmas, New Year, travel, bad weather, full Moon etc.  A couple of clear skies did present a good visual sighting through binoculars but no image.

Last week, on Thursday evening, I eventually got my first opportunity but due to very strong winds (hence the clear sky) was unable to even set-up the equipment.  The following evening a cold but clear sky again occurred and this time I took my chance.

Photographing and processing a comet is not straightforward.  Since my last post, Comet Lovejoy has tracked west (to the right) of the Orion constellation and at the time of imaging was located just above the western end of Taurus, before it passes west of Pleiades on 19th January.  The first problem is therefore obvious – it’s travelling very fast, about 82,000 mph.  Fortunately provides real time information on the comet’s journey, which is both impressive (how does it do this?) and very useful.  Inputting the real time RA and DEC location data into the SynScan handset, the mount slewed straight to the comet, which was just off-centre of the field of view.  And thus I had my first, proper live view of a comet – fantastic! Now for the tricky part: how to get an image?

I had already posed this question on Stargazers Lounge and had a number of useful suggestions. Of course, whilst the mount tracks the celestial sphere, the comet is making its own way through the sky, which is not the same path as the stars seen from Earth; I believe it is possible to track the actual comet but that’s too difficult for me. Therefore, it is necessary to err towards lots of shorter exposures to avoid blurring; the longer the exposure the more likely it is the comet’s tail can also be captured in the image but it is a fine line between achieving this and blurring.  In the end I took two sets of images at 20 seconds and 60 seconds – probably too cautious but I was happy with the result and will be better prepared for my next comet, whenever that is.

Then came the next obstacle – stacking and processing.  I had not thought about this before but in the world of stacking, the software is unable to distinguish the comet from stars.  As a result it is necessary to identify the comet in each light frame by manually tagging it; at this point I regretted taking x40 exposures! Deep Sky Stacker will then stack using one of three procedures which basically prioritises either the comet or the stars or a combination of both – I chose the latter.  As usual post processing in Photoshop is then used to improve the final image.

C/2014 Q2 Comet Lovejoy WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | 16th January 2014

C/2014 Q2 Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 40 x 20secs @ ISO1,600 + darks | Fairvale Observatory 16th January 2015

Whilst I am very excited to have successfully photographed Comet Lovejoy, I was less than impressed by the stacked image and actually prefer the original.  Processing comet images takes the dark art of processing to a new level and I feel I’ve only reached the learning foothills so far.

Lovejoy will be in the sky for some weeks to come as it tracks across Andromeda and Perseus during February and into Cassiopeia in March.  Whilst the best may be almost past, I certainly hope to follow its progress and, subject to conditions, might even attempt to image it once again before it continues its 8,000 year orbit into deep space.  However, for now I’ve got my comet and am well satisfied – I will spend the intervening winter days practicing my comet stacking.

Comet Lovejoy WO GT81 + Canon 550D & FF | 15 x 60 secs @ ISO1,600 + darks| 16th January 2015

Comet Lovejoy
WO GT81 + Canon 550D (modded) & FF | 15 x 60 secs @ ISO1,600 + darks| Fairvale Observatory 16th January 2015