The Sum Of The Parts

Picture saved with settings embedded.

Having established an alternative imaging site at the southern end of my garden in the summer of 2018 AKA The Shed Observatory, I was thrilled to be able to image objects in the north sky for the first time, hitherto obscured by my house from the usual observing location.  Soon thereafter it was with great pleasure I achieved a good narrowband image of IC 1805 the Heart Nebula but was subsequently disappointed to find that part of the neighbouring object, IC 1848 the Soul Nebula, had been missed after encountering a framing problem.

One year on I was back in The Shed with new objectives for these targets: (i) to obtain a complete image of the Soul Nebula, and (ii) given the relative proximity of the Heart & Soul Nebula, to compile a mosaic which included the two objects; surprisingly I’d not attempted a mosaic before and this seemed like a good place to start.  Given the increased imaging time needed to complete even a small mosaic + the lack of darkness at the end of August + British Weather, I chose to restrict imaging to just the Ha-wavelength, which works well with both these targets and could build on the Ha subs already obtained of the Heart Nebula in 2018.

Traditionally mosaic images are based on a grid of say 1+1, 1+1+1, 2 x 2, 3 x 3  etc., which are then combined using the relevant aforesaid sequences, however, in this case starting with the original Heart Ha-subs such a system was not possible.  Since moving to mono imaging with the ZWO ASI1600-Cool camera I’ve used the excellent APT (Astro Photography) image capture software, which hitherto has catered very well with all my needs – including plate solving.  However, at this time APT did not yet have a comprehensive mosaic facility (see footnote) which would allow an imaging grid to be planned and pre-programmed.  Instead it was therefore necessary to first determine suitable image coordinates for each mosaic panel that would cover the Heart & Soul + 25% overlap and then manually establish each position prior to imaging.

Given the proximity of each component I estimated a suitable mosaic could be achieved with three panels, one for each of the main objects and an intermediate panel that would bridge the space between, thus linking the objects to form a continuous mosaic.  Given the spatial relationship, each ofthe three panes needed to be stepped relative to each other and also slightly rotated.  The final data for each nebula consisted of 1h 40m integration time + a further 1h 15m for the link panel, or 4h 35m in total for the complete mosaic.

To my relief the final mosaic was relatively easy to create.  First modestly stretching each panel, paying attention to the background levels and removing any gradients, in order to ensure uniformity between the images before compilation.  I then used Microsoft’s free ICE (Image Composite Editor) software to stich the three panels together into a final mosaic, after which further adjustments were made in Photoshop.

I’m very pleased with the outcome of my first, albeit modest mosaic.  With the ability to return to targets on any occasion using plate solving and, as always weather permitting, multi-image mosaics now open up whole new possibilities which can be captured and compiled over a period of time – even years.  However, until I am able to use a suitable mosaic programme for sequencing, I’m more likely to restrict such projects to small areas that only require limited imaging time, such as the Heart & Soul.

The Greeks and Romans knew a thing or two about mosaics and I’ve long enjoyed Escher’s use of the mosaic form as a basis for his graphic art (see above).  I’m quite sure they would marvel at the astrophotography of Deep Sky Objects and how mosaics can be used in their creation.  The mosaic is all about the sum of the parts, which not only produces a wider, more encompassing view but in doing, so the combined parts add a different quality to the final image.  For now my first mosaic has been quite successful, was good fun and moreover, I can see that the technique ultimately has the potential to open up new and exciting possibilities even with my existing equipment.

Footnote: Since imaging and processing the Heart & Soul mosaic, a recently updated Cartes du Ciel (CdC) verson 4.2 has been released, which incorporates a mosaic planning function.  Moreover, the aforesaid plan can then be imported into the APT software (subject to a minor adjustment being undertaken by APT to fix a panel numbering issue) and thereby provide integrated mosaic planning and programming.   

Object Heart Nebula IC 1805     
Constellation Cassiopeia
Distance 7,500 light-years
Size 150’ x 150’  =  2.5o or 200 light-years
Apparent Magnitude +18.3
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 02:33:09    DEC 61:24:23                     


Exposures Heart Nebula 20 x 300 sec Ha  =  100 minutes   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats Ha  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 16th & 17th  August 2018 @ +23.30h  
Weather Approx. 12oC   RH <=95%


Object Soul Nebula IC 1848   & Link Pane
Constellation Cassiopeia
Distance 6,500 light-years
Size 150’ x 75’  or 100 light-years
Apparent Magnitude +18.3
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre – Soul Nebula   RA 02:56:16    DEC 60:20:07

Centre – Link Pane         RA 02:43:38    DEC 60:55:59    

Exposures Soul Nebula  20 x 300 sec Ha  = 100 mins   

Link Pane       15 x 300 sec Ha  =  75 mins

  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x Flats HaI  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 23rd & 25th August 2019 @ +23.30h 
Weather Approx. 18oC   RH <=60%


Fabric Of Reality

DWB 111 Ha Combined FINAL Image (Large)

In a quest to find and image new targets, my curiosity was recently drawn towards a more obscure catalogue of HII emission nebula, in particular DWB 111, AKA Simeis 57 or The Propellor Nebula.  The object was first catalogued in the early 1950s by the Crimean Astronomical Observatory at Simeiz, Ukraine as number 57 of a total of 306 HII regions!  Then in 1969 H.R. Dickel, H. Wendker and J. H. Bieritz (DWB) developed a catalogue of 193 HII optically visible HII objects in the Cygnus-X region of the Cygnus constellation, which included DWB 111; strictly speaking The Propellor consists of DWB 111 & 119 with other close-by features DWB 107,108, 118, 125 & 126.

Whatever the nomenclature, suitable catalogues that can be used with Cartes du Ciel for the purpose of locating DWB 111 were difficult to unearth but I eventually found and installed the necessary data.  Shortly thereafter on 5th September, for the first time I successfully directed my telescope to this hitherto unseen and to some extent neglected part of the night sky. Wow!

DWB Catalogue

The target is located between Vega and Deneb, which at this time of the year tracks northwest directly above Fairvale Observatory and means the imaging opportunity is confined to just about 2 hours before disappearing behind the roof of my house!  As an HII region and with limited time, I therefore concentrated on imaging the Ha wavelength, with only a few SII and OIII subs, which are both weak in nature.  The aptly named Propellor Nebula lit up my initial test exposure at the centre of the screen and was obviously going to make an excellent object with more subs.  However, with a total Ha-integration time over two nights of some 110 minutes of Ha data, it was the details seen in surrounding region that took my breath away once processed (see top-of-page).

With a 2.65o x 2.0o field-of-view, my equipment provides a good view of The Propellor Nebula but stretching the Ha image stack revealed the aforementioned wider area, which is absolutely full of HII features that obviously continue well beyond the image.  Pointing to unseen forces, numerous filament-like threads produce fascinating structures that run throughout the nebulosity, which makes for a truly exciting image. With limited OIII and SII subs, colours were difficult to tease out using the HST palette but, nonetheless, the SHO (below) and HSO (bottom-of-page) images are also pleasing and hold much promise when additional integration time can eventually be obtained in the future.

SHO F HLVG (Large)

Unfortunately it seems that little is known about DWB 111, including its distance from earth and it is therefore difficult to estimate that actual size of the aforesaid view. Notwithstanding, it is clearly very extensive with exquisite details that seem to represent something of the very elusive fabric of reality that is space itself and it is therefore difficult to understand why DWB 111 and this exciting region of the night sky is not given more attention by astronomers.  Rich pickings abound and I hope to return one day to do this exciting area greater justice.

HSO F crop (Large)

Object MWB 111,  Simeis 57  AKA  The Propellor Nebula 
Constellation Cygnus
Distance ?
Size <=25’  
Apparent Magnitude ?
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 20:16:78      DEC 43:23:33                     

Top = North     

Exposures 22 x 300 sec  Ha, 8 x 300 sec OIII & SII                                                                          (Total time: 3hr 10 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5 x 300 sec Ha, OIII & SII  Darks,  20 x 1/4000 sec Bias  10 x  Ha, OIII & SII Flats               @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 5th & 7th September @ +22.30h  
Weather Approx. 16oC   RH <=75%                  🌙 ¼ waxing


Game On

NGC 281 SHOxxxCrop (Large)

Once again this year between April and August I moved to the so-called Fairvale Observatory South, AKA the “Shed Observatory” situated at the end of the garden, in order to provide imaging opportunities of the northern sky, which is otherwise completely blocked from view by my house from the north position.  It’s not perfect but I was able to tease out some new classic objects, as well as revisit others seen from here for the first time last year.  Despite having a view of Polaris from this location, I’d previously battled with guiding on circumpolar tracking objects and this year decided to grasp the nettle and address the problem.

Given prior success with the PHD Drift Align technique for polar alignment without a view of Polaris, as from Fairvale Observatory North, this time I decided to try the alternative PHD Polar Drift Alignment (PDA) method, which is based on direct visual alignment with Polaris.  However, although quite straight forward, after a number of attempts I still failed to achieve a decent result using this approach.  By this time astronomical darkness had ceased for more than eight weeks over the summer solstice period and I took a break from astronomy to ponder a solution.

Developed by an enthusiast in the UK, Sharpcap is a fully working, free image capture software.  However, for the sum of £10 the Pro-version contains a number of useful additional features, including a polar alignment routine that is highly recommended by numerous users on the Stargazers Lounge Forum – after spending my £10 I can see why.  There are similarities with PHD’s PDA method but Sharpcap is even easier to use and, more importantly, very soon I achieved a reasonable polar alignment from the Shed Observatory  for the first time!

Perhaps the surprising theme of 2019 has been the discovery of various classic objects that could, despite previous expectations to the contrary, be seen for imaging from Fairvale Observatory, albeit with some difficulties at times: M101 Pinwheel Galaxy & M51 Whirlpool Galaxy.  Now this summer this theme was about to continue, with the first cab off the rank being NGC 7380, AKA the Wizzard Nebula in the Constellation of Cepheus.

The Wizzard is an attractive emission nebula that forms a popular narrowband object for astrophotographers, frankly I was astonished to find it was within my sight from the Shed Observatory but not for long.  With astronomical darkness lasting only 3-hours at the beginning of August, starting at about 23.30h there was no more 2-hours for imaging before the target disappeared behind my +15ft hedge

NGC7380 Ha Stack2 Crop (Large)

Notwithstanding, I was keen to see how this relatively small object (25 arc minutes) would look with my equipment.  As so often, the stronger Ha-wavelength produced a half reasonable result (see above) with only 45-minutes (15×3 minutes) integration time but with only about 30-minutes (10×3 minutes) each, incorporating the weaker OIII and SII wavelengths only produced rather noisy and washed out HST images (below left SHO, right HOO).  However, I would be confident that with longer integration times, on another day from a better location, my equipment could probably do justice to the Wizzard.

As the Cygnus constellation then came into view three weeks later, I discovered another favourite object NGC 281 AKA the Pacman Nebula.  By now astronomical darkness had improved slightly, thus providing a 50% increase of integration time of nearly 3-hours! Though still somewhat limited in time, Pacman is however a little larger than the Wizzard (35 v 25 arc minutes), slightly brighter, with overall stronger narrowband, thus altogether providing a better imaging prospect.  The resulting HST images of Pacman therefore did not disappoint in SHO (top-of-the-page) and HaOO (below).

NGC 281 HOOgxXCropSpike.png

Whilst imaging from the Shed Observatory has resulted in a number of imaging firsts and proved a lot of fun over the last two summers, I’m now of the opinion that I to further improve my field-of-view and imaging times looking north I need to move away from the Shed and into the garden, as was originally planned; the +15ft hedges adjacent to the Shed location frequently curtails sight lines and a move slightly north could add up to 2-hours imaging time – we shall see.  Furthermore, the discovery of Sharpcap and its Polar Alignment function is certainly a game changer, that I hope to put to good use again next year when I move into the garden for the summer.

Object NGC 281  AKA Pacman Nebula
Constellation Cassiopeia
Distance 9,500 light-years
Size 35 arc minutes 
Apparent Magnitude +7.4
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 00:55:00      DEC 56:40:29                     

Right = North  

Exposures Ha 15 x 300 sec  OIII & SII 10×300 sec                                                               (Total time: 2hr 55 minutes)
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5×300 sec Darks 20 x 1/4000 sec Bias 10 x  Ha, OIII & SII  Flats  @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 26th August 2019 @ +22.15h  
Weather Approx. 19oC   RH 70%                  🌙 Crescent waning

Other Worlds

LRGB Image FINALX2 (Large)

Being galaxy season it was appropriate that the BAA spring meeting this year on 27th April was all about – galaxies.  This was my first BAA meeting and I’m pleased to say it was well attended and very worthwhile, I especially enjoyed the following presentations:

  • Prof. Richard Ellis: The Quest for “Cosmic Dawn”;
  • Prof. Chris Impey: Einstein’s Monsters: Black Holes at the Heart of Galaxies;
  • Stewart Moore: Galaxies: A Brief History of Discovery, and
  • Owen Brazell: Observing Galaxy Clusters.

It seems incredible that just 100-years ago the prevailing view was that Universe consisted entirely of the Milky Way, though that was soon about to change.  Whilst Immanuel Kant had proposed the possibility of galaxies outside our own as long ago as 1755, it was not until Edwin Hubble’s work at the Mount Wilson Observatory, California that the existence of other worlds, in the form of galaxies, was proven and accepted during the period between 1924 and 1929.

Following Copernicus’s controversial theory in 1543 that the Earth orbited the Sun, the evidence this time that there was much, much more beyond the Milky Way was equally profound in its implications, if not more so.  However, I was surprised to learn that it was Vesto Slipher and not Hubble who discovered the redshift of galaxies that was fundamental to understanding that galaxies existed outside the Milky Way that were moving away from us – it would seem to me that he deserves much greater credit as well as Hubble for this work.  The current estimate is that there are some 100 to 200 billion galaxies in the observable universe but new research now estimates that the total number is likely to be at least ten times greater!  Either way there are many other worlds out there.

After recently learning that I could after all see and image a few larger galaxies from Fairvale Observatory  in-and-around the Ursa Major constellation, it was to my great delight when I then discovered that one of them was M51 AKA the Whirlpool Galaxy.  I’ve seen many images of this wonderful object and was frustrated that it seemed to be completely out of sight from here but thankfully that is not the case.  Armed with this knowledge, following an imaging session of M101 at the end of March, I therefore went on and immediately grabbed a single Luminance test sub of M51 (below) before it disappeared behind the roof of my house, (a) because I could, and (b) to see how it looked with my equipment.  The answer was that it was almost certainly a viable target for another night when more time was available.

M51 KStar

While located just above the star Alkaid in Ursa Major, M51 is now included within the nearby constellation Canes Venatici; created by Johannes Hevelius in the 17th Century, M51 was previously in Ursa Major.  One of the more famous grand-design spiral galaxies i.e. with prominent well-defined spiral arms, the Whirlpool Galaxy forms a striking image as it interacts and distorts the dwarf galaxy NGC 5195 located at the tail of its outer second arm.  The exquisite structure of M51 is further enhanced by large star-forming regions along the spirals, which are picked out by the associated hydrogen alpha gases.

CdC M51 location 100419 10pm

Timing is everything: M51 is in a tricky position seen from Fairvale Observatory, obscured for much of the time at the north viewing location by the house and from the south location by a 20ft hedge – in between there’s a maximum window of no more than 2.5 hours for imaging!

The smaller dimensions of the M51 galaxy would normally place it at the limit of my equipment for imaging but is helped by its aforementioned clear-cut features, strong colours, favourable apparent magnitude and its location towards the zenith immediately above my observatory.  This has long been in my top-10 ‘must-do’ imaging list but hitherto was thought to be out of view.  Unlike M101, which lies below Alkaid i.e. south, being further north the imaging time of M51 from Fairvale Observatory North is even shorter before it too retreats behind the rooftop.  However, this year I decided to move early to the summer location at the bottom of the garden – Fairvale Observatory South – where it was possible to gain a slightly longer view, though still only just over two hours before it disappears for the night, this time behind the adjacent 20-foot hedge!

It’s clear that the final LRGB image would be greatly enhanced with further integration time and the addition of Ha-wavelength but for now I’m content that at last I’ve managed to capture this spectacular object on camera.  Skies permitting I hope to return to the Whirlpool and its companion NGC 5195 as soon as possible.

Object M51 The Whirlpool Galaxy & NGC 5951
Constellation Canes Venatici
Distance 23 million light-years
Size 11.2’ x 6.9’  or 24 light-years (M42 only)
Apparent Magnitude +8.4
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWO x8 ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 13:30:03      DEC 47:11:43                     

Top  = South  Bottom = North 

Exposures (A)    L 18 x 180 sec  RG 9×180 sec  B 10 x 180                                                        (Total time: 2hr 18 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 10 x 180 sec  Darks  20 x 1/4000 sec Bias  10 x  HaLRGB Flats                                        @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 10th April 2019 @ +22.00h  
Weather Approx. 6oC   RH 60%                  🌙 ¼ waxing


HaLRGB final (Large)

At Fairvale Observatory North it’s normal that I struggle to find suitable objects when the so-called Galaxy Season arrives in late winter through spring.  Despite the abundance of galaxies my William Optics 81mm aperture rules out all but a few for imaging as they are mostly just too small.  However, smaller galaxies that make up features such as Markarian’s Chain and the Leo group do produce a pleasing widefield image full of the so-called faint-fuzzies but hitherto with the exception of M31 the Andromeda galaxy I’ve struggled to obtain the real thing – a decent, full-on spiral galaxy – they are there of course but are either obscured to the north by my house and trees or, as indicated, are too small for my equipment to resolve properly.


M95_96 Anotated

Nonetheless, this year after playing around imaging the aforesaid Leo Group (see above), I looked directly above the observatory and to my surprise discovered a new world of galaxies close to the Zenith that were just visible, briefly transiting along the southern edge of the house roof, which included a few large classics in-and-around the constellation Ursa Major.  After 2-hours imaging the Leo group time was too short for a serious attempt at any of these galaxies but nonetheless was sufficient to experiment with what looked like a potential target, the wonderful M101 the Pinwheel Galaxy, which at over 28 arc seconds showed real potential with only 42 minutes of subs before it disappeared out of sight for the night.  Moreover, large parts of Ursa Major and nearby galaxies also briefly appeared at other times on the night from behind the roof, tracking close to the gutter for nearly 2.5 hours before returning behind the roof in a similar manner to M101.  Thus assuming full set-up could be achieved earlier in the evening, this seemed to provide a window of opportunity that I grasped over two subsequent evenings with a very satisfactory outcome.

With nearly 5-hours of subs, processing of M101 would be a challenge in order to bring out the galaxy’s colours and perhaps highlight the stellar nursery areas that are found along the spiral arms and are rich in Ha-light.  To do this I first changed the RGB image stack to Lab Colour in Photoshop, increased the saturation in the (a) and (b) channels before returning to RGB mode.  This had the desired effect of successfully enhancing the colours, which can otherwise look washed-out after stacking, stretching and combining.  After this I split the RGB channels and pasted the Ha-stack into the Red channel, before re-combining again into an RGB image, at which point the H II regions along the spiral arms just lit up!  These were both new processing techniques for me that greatly improved the final image and hold great promise for processing HaLRGB objects in the future.

M101 closeup data crop

M101 widefield data crop

The final image (top of the page + crop below) far exceeded my expectations in detail and colour, showing off much of the galaxy’s wonderful structure and the aforementioned HII regions. There’s no doubt that further integration time will benefit the faint extremities of the galaxy but for now it was a very satisfying outcome of a spectacular object that hitherto I thought was beyond my seeing at Fairvale Observatory.  Also noteworthy, the image has caught a plethora of companion galaxies close to and around M101 (see annotated images above), most conspicuous of which is the classic side-view of NGC 5422 (left of M101) and the more unusual dwarf spiral galaxy NGC 5474 (right of M101),  which has been noticeably distorted by gravitational interaction with the Pinwheel itself.  All-in-all a fine display of galactic fireworks worthy of November 5th.

M101 HaLRGB final Closeup

Object M101  Pinwheel galaxy
Constellation Ursa Major
Distance 20.9 million light-years
Size 28.8’ x  26.9’  or 170,000 light-years  
Apparent Magnitude +7.86
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 14:03:15      DEC 54:20:46                     

Top = North  

Exposures (A)    L 31 x 180 sec  HaRGB each 16×180 sec                                                                  (Total time:4hr 45 minutes)   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 10 x 180 sec & 15 x 60 sec Darks  20 x 1/4000 sec Bias  10 x  HaLRGB Flats               @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 29th & 31st March 2019  @ +22.00h  
Weather Approx. 8oC   RH <=70%                  🌙  ¼ waning


Hunting Orion

Combined +180 degrees 3+5min HaLRGB (Large)

In Greek mythology it is said that Zeus, the god of thunder, placed a giant huntsman amongst the stars as the constellation Orion.  Today it is one of the most recognizable of the 88 constellations in the night sky and certainly one of the most popular amongst astronomers.  Towards its extremities it is defined by the red supergiant star Betelgeuse at the top-left and the massive blue supergiant Rigel lower-right, divided in the centre by Orion’s so-called ‘belt’ formed by the line of bright stars from left-to-right: Alnitak, Alnilam and Mintaka.  These and the other stars that make up the constellation of Orion are of great interest to astronomers and also make an attractive widefield image with a standard camera.  But the more serious astrophotographer is mainly interested in the panoply of exciting DSOs that lie within and around Orion that I have therefore been pursuing myself since late January.

My quarry started with the Horsehead and Flame nebulae imaged in narrowband processed using the Hubble Palette technique in SHO to great effect.  Much to my surprise a spectacular period of warm weather and clear skies four weeks later then allowed me to capture the Great Orion Nebula over three nights in HaLRGB with an equally good result.  Such was the fine weather conditions that I was then able to continue over a further two nights – five consecutive nights of imaging in the UK in late February, unprecedented in my experience – with the objective now being the reflection nebula M78.

M78 is the brightest diffuse reflection nebula of a group that belongs to the Orion B molecular cloud complex but with an apparent size of 8 x 6 arc seconds it is a something of a challenging target with my equipment.  Notwithstanding, with the mono CMOS ZWO camera and the opportunity of obtaining increased integration times I considered it worth a try and was not disappointed with the outcome.

I generally like to present images in their natural orientation but this time I’ve chosen to rotate the it 90o anticlockwise, thus allowing the wider horizontal framing to better show M78 and the dramatic red Ha-light of nearby Barnard’s Loop together.   As with M42 previously, I first stacked and processed two exposure sets, short 60 second and long 300 second subs, before then combining them so as to tease out subtleties within the reflection nebula itself and provide greater control of the otherwise dominant Barnard’s Loop.  Despite my concerns about equipment and scale, I’m very pleased with the outcome of the main image (top-of-the-page), which beautifully shows off both the aforementioned objects to great effect and has even extracted some of the colour and detail of associated star clusters within and around the nebula.  Not surprisingly the cropped version of M78 itself starts to look a little noisy but is nonetheless interesting (below).

Combined crop 3+5min HaLRGB (Large)

After a very unpromising few months, the weather, Orion and my astroimaging took a surprising turn for the better from the end of January.  As a result of much longer integration times using plate solving over multiple sessions, combined with varied exposure times and more complex processing, I successfully managed to bag three classic deep sky objects of the Orion constellation – what’s not to like?

Object M78 Orion reflection nebula
Constellation Orion
Distance 1,350 light-years
Size 8’ x 6’   
Apparent Magnitude +8.3
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 05:47:37      DEC 00:20:59                     

Top Left = North  Bottom Left = East 

Exposures (A)    LRGB 8 x 180 sec  Ha 10 x 180sec       (Total time: 1hr 24 min.)

(B)    HaLRG 12 x 300 sec B 17 x300 sec      (Total time: 5hr 25 min.)   

  @ 139 Gain   21  Offset @ -20oC    
Calibration 10 x 180 sec & 5 x 300 sec Darks  20 x 1/4000 sec Bias  10 x  HaLRGB Flats               @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 25th  26th 27th February  2019 @ +19.45h  
Weather Approx. 8oC   RH 60 to 80%                  🌙  ½ waning

Eleventh Hour

HaLRGB2FINALcrop (Large)

As outlined in my last post Horseplay, it seemed like plans for imaging over the winter were going to be completely scuppered this year, with weeks of cloud cover from mid-November through to late January.  I was therefore very grateful for three clear nights at the end of January that finally enabled me to carry out my principal winter imaging project of the Horsehead and Flame nebulae in narrowband.  Notwithstanding, given the preceding bad weather and the onset of galaxy season, I reckoned that this was likely to be the end of my imaging for a while, which could not have been further from the truth as more than two months of good night skies (on-and-off) then followed.

Although by late February Orion is crossing the Meridian early in the evening, darkness is still prevalent at the same time and with the aforementioned good conditions it’s been a bonus to catch more of Orion’s objects before they finally disappear for the year.  I’ve successfully imaged some parts of Orion before with the ZWO1600MM-Cool camera but for various reasons they’ve mostly been short integration times in narrowband.  It was therefore obvious that given this unexpected opportunity, on this occasion I should attempt to image everyone’s astrophotography favourite – M42 the Orion Nebula in LRGB.

At some 1,500 light years distance, M42 is the closest large star forming nebula to Earth and always holds great promise when imaging.  I’d previously obtained some good images of the Orion Nebula with a modded-DSLR camera and more recently a few narrowband images in 2017 showed the promise of using the new ZWO CMOS mono camera.  Now with unusually good weather I wanted to try and achieve an image that really showed off M42 and its neighbours M43 and the Running Man Nebula (SH-279) in all their glory, paying particular attention to the more difficult inner structures and associated Ha nebulosity.  In order to achieve this I first imaged in HaLRGB at 180 sec exposures with Unity settings for 5½ hours and then at shorter 60 sec exposures for 1 hour over three consecutive nights.

With much longer integration times than before, careful processing and manipulation to bring the long and short exposure images together, I’m very happy with the final result, which I believe achieves most of the aforementioned objectives.  Internal structure and colour is shown to good effect but I’m especially pleased with the addition of the Ha data, which dramatically enhances those areas where present together with interstellar dust within and around the main objects; I’m already planning to add more Ha data next year to further intensify the aforesaid impact.

M42 180s Ha StretchNR (Large)

M42 Ha data

Obtaining such results at this late stage of February was completely unexpected and, I thought, would effectively mark the eleventh hour this year for Orion and the rich collection of other DSOs that are found across the winter sky.  But no, there was much more to come – watch this space!

Object M42 Orion Nebula + M43 & Running Man Nebula (SH2-279) etc.
Constellation Orion
Distance 1,500 light-years
Size 65’ x 60’  or 24 light-years (M42 only)
Apparent Magnitude +4.0
Scope  William Optics GT81 + 0.80 x Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQASCOM computer control & Cartes du Ciel
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 camera & PHD2 guiding
Camera ZWO1600MM-Cool mono  CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix  Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PHD2 +  Deep Sky Stacker & Photoshop CS3
Image Location              & Orientation Centre  RA 05:35:09      DEC -05:08:31                     

Top Right = North   Top  = North East   Bottom Left = South   Bottom = South West 

Exposures (A)    L 20 x 180 sec  R 24×180 sec  G 25 x 180  B  24 x 180sec  Ha 17 x 180sec                            (Total time: 5hr 30 minutes)

(B)    12 x 60 sec HaLRGB (Total time: 1hr)   

  @ 139 Gain   21  Offset @ -20oC    
Calibration 10 x 180 sec & 15 x 60 sec Darks  20 x 1/4000 sec Bias  10 x  HaLRGB Flats               @ ADU 25,000
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5-6
Date & Time 23rd 24th 25th February  August 2019 @ +19.40h  
Weather Approx. 7oC   RH <=75%                  🌙 ¾ to ½ waning


SHO2 CompF (Large)

Who doesn’t like Orion and its constituent parts – M42/43, M78, the Witch’s Head, Barnard’s Loop etc.?  For many its annual appearance in the night sky is greatly anticipated and will form one of the main astrophotography highlights of the year as it passes across the sky between late November and February.  For me a basic afocal image of the Great Orion Nebula for the first time in 2013 marked something of an epiphany, as it demonstrated the power of long exposures in capturing the otherwise hidden beauty and excitement of Deep Sky Objects.

Since taking up astronomy and then astrophotography, I always return to at least one of Orion’s  objects each year, initially to see if I could just capture it on camera with my equipment and then to try and improve the image of each target.  It’s been a gradual process but I’m pleased to say I’ve usually managed to achieve such improvements over time, which has been both satisfying and often exciting – such is the nature of these objects.  Progress almost always resulted from one or more of four developments: new equipment, new software, new techniques and better processing.

Each step was usually small but occasionally a quantum change took place, such has been the case during the past two years: first with the change from DSLR to a CMOS mono camera and then, more recently, learning to plate solve.  I was reluctant to change to a traditional CCD mono camera which usually requires very long exposures that, in my opinion, is incompatible with British weather, light pollution and the frequent overhead passage of aircraft where I live between Gatwick and Heathrow airports – if one doesn’t get me the other will, or the low flying helicopters that pass over my observatory throughout the night from nearby Redhill aerodrome!

It was therefore very fortunate that at the same time I wanted to upgrade my camera from a DSLR, the new CMOS sensor technology had literally just arrived on the market.  With low read noise and shorter exposures, the ZWO1600MM-Cool mono camera I purchased has been a revolution for me, as well as the entire astroimaging community.  Furthermore, the use of narrowband imaging has added a completely new dimension to my astrophotography – apart from the ability to image when the Moon’s about each month and defy light pollution, narrow Ha-OIII-SII wavelengths reveal a whole new world that is both interesting and often dramatic in appearance.

Notwithstanding these developments, I was hitherto hampered by limited integration times of just over two hours (at most) either east or west of the Meridian, until in 2018 I finally mastered (probably that’s overstating my current prowess) plate solving, thereby making integration times literally infinite.  All I needed now was clear skies! Despite my enthusiasm for astrophotography, there have been times over recent months when I’ve questioned my choice of hobby and even maybe giving up.  Given sufficient funds it is possible to have the most incredible imaging set-up, capable of obtaining equally incredible images – subject to user ability – but if the sky remains cloudy it’s no more than a pile of expensive junk!

Having obtained a very decent LRGB image of the Pleiades on 17th November, armed with the ZWO1600 camera and my new plate solving skills, I decided to take on a project over the winter months.  My objective was to obtain one very good image based on a much longer integration time than I’ve previously achieved, acquired by imaging the same object over as many nights as possible during December and January. However, as Robert Burns once put it “The best laid schemes o’ Mice an’ Men, / Gang aft agley,” (translated – the best laid plans of mice and men often go awry).  Apart from one evening that fortuitously coincided with the lunar eclipse on 21st January, the skies here remained obscured by cloud from November 18th until January 27th (or 70-days!!!) and I thought my project was scuppered, that is until the other qualities required of astronomy came into play: patience and good luck.

Picture saved with settings embedded.

My first image of the Horsehead & Flame Nebulae, 23rd November 2014: William Optics GT81 +FF, Canon 700D (unmodded), SW AZ-EQ6 GT mount, 30 x 90 secs @ ISO1600 + full calibration

The Horsehead and Flame nebulae are traditionally imaged in LRGB colour, indeed my first and subsequent images of these objects have been mostly undertaken in this way (see image above).   However, inspired by a narrowband image of these objects I’d seen earlier last year, I too wanted to try and capture these nocturnal bedfellows in narrowband and process the subs using the Hubble Palette technique.  Given the aforementioned cloud problem, by the time late January had been reached Orion was already slipping over the western horizon for another year and I thought the project was dead before it could even start, at which point good luck played its part.  Starting on 27th January and for three out of the four evenings, the sky cleared and I eagerly launched into the long awaited project.

Unfortunately by now Orion crossed the Meridian about 9 p.m. and most imaging could only be undertaken on the west side, thus limiting each night’s subs again to 2½ hours or less.  But with three nights in the bag before inevitably the cloud returned on the 31st January, I had secured 106 x 5-minute Ha, OIII and SII subs or 6 hours 50 minutes of total integration time, at least three times what I had ever previously achieved.  The key was plate solving, as each night I could return to exactly the same part of the sky and continue imaging the same objects to the nearest pixel.  Having obtained and reviewed the data, it was now time to start processing.

NGC 2024 Ha Starless2

Given the quality and quantity of data obtained I decided to take my time processing and, furthermore, try to use some new techniques to make the very best of the final image.  I was particularly keen to tame some of the brighter stars like the blue supergiant Alnitak located uncomfortably close to the Flame and at the same time bring out the interstellar dust that is present in the foreground below the Horsehead and across the lower right quadrant, which becomes evident in the starless processed Ha layer (see image above).  It took quite a while but in the end I am very pleased with the outcome, which I think shows all the benefits of longer data integration and the extra care taken processing.  The final SHO narrowband version of the Horsehead and Flame nebulae looks a real cracker, perhaps one of my best and has been worth all the patience and additional time taken to show these two objects and the adjacent region literally in a new light.

Needless to say, I’m already thinking about next year, cloud permitting!  I hope to return to the Horsehead and Flame for another playtime next winter, in order to acquire more subs with which to build further on the foundation achieved this year by a stroke of luck at the very end of Orion’s annual visit – can’t wait.

Object (i)Horsehead Nebula (Barnard 33)  &  (ii)  Flame Nebula (NGC 2024)
Constellation Orion
Distance 1,500 light-years
Size (i)8” x 6”  &  (ii)  30’ x 30’
Apparent Magnitude +10.0
Scope  William Optics GT81 + Focal Reducer FL 382mm  f4.72
Mount SW AZ-EQ6 GT + EQ-ASCOM computer control
Guiding William Optics 50mm guide scope
  + Starlight Xpress Lodestar X2 guide camera & PHD2 control
Camera ZWO1600MM-Cool (mono)   CMOS sensor
  FOV 2.65o x 2.0o Resolution 2.05”/pix Max. image size 4,656 x 3,520 pix   
EFW ZWOx8 + ZWO LRGB & Ha OIII SII 7nm filters 
Capture & Processing Astro Photography Tool + PS2,  Deep Sky Stacker & Photoshop CS2, HLVG
Image Location              & Orientation Centre  RA 05:40:57    DEC -02:30:55                     

Top = North 

Exposures 40×300 sec Ha+34×300 sec OIII+32x300sec SII  (Total time: 6hr 50min )   
  @ 139 Gain   21  Offset @ -20oC    
Calibration 5×300 sec Darks  20×1/4000 sec Bias 10xFlats Ha-OIII-SII  @ ADU 25,000  
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK     Typically Bortle 5-6
Date & Time 27th, 28th & 30th  January 2019 @ +21.30h  
Weather Approx. <=1oC   RH <=90%                🌙 ½ to ¼ waning

Howling Wolf

lunar eclipse mosaic 210119x

I have a theory that at or about the time of each full moon the night sky is almost always clear, I don’t have the data but it just seems that way most of the time.  As an astrophotographer I am more than usually aware of the full moon as it makes all except narrowband imaging impossible, when it floods the night sky with its brilliant white light.  Apart from a brief and somewhat futile attempt on 14th December – the Moon and mixed cloud curtailed imaging on that occasion – my last astronomy at Fairvale Observatory was on the 17th October, thereafter being plagued by persistent cloud and bad weather; after a promising start at Les Granges Observatory in early November no further astronomy was possible during the rest of the week due to cloud and poor weather conditions.  I’m beginning to think I need a new hobby, one that is not weather dependent at least!

Given the disappointing lack of astronomy conditions I paid little attention to the upcoming lunar eclipse on the early morning of 21st January.  However, as the day approached various weather forecasts were inevitably mixed but at least two out of five held some promise of clear skies during part of the eclipse.  I therefore started to at least undertake some preliminary planning, only to discover that much of the eclipse might be obscured by houses and tall trees to the west of my location; Plan-B was to travel to nearby Reigate Priory Park which has a decent westerly outlook closer to the horizon.

As it turned out on the 20th a clear, sunny but cold and clear day preceded a clear evening and at about 3 a.m. on the 21st shortly before the action was due to start, the sky was still clear, thankfully proving my theory correct on this occasion.  Furthermore, my concerns over obscured views turned out to be mostly unfounded, with the Moon higher in the sky than envisaged and good sightlines up until the end of totality, at which time the cloud eventually rolled in anyway.  As a result I was able to enjoy over two hours viewing and imaging time, which encompassed the entire penumbral and totality stages of the eclipse.

Having obtained excellent images of the last lunar eclipse on 28th September 2015, tracking with a DSRL and the William Optics GT81 + another static, tripod fitted DSLR and 250mm zoom lens, this time I decided to adopt a different, more mobile set-up, in case Plan-B was necessary.  In 2017 I purchased a Canon 300mm f/4 L-Series telephoto lens to use for astronomy and wildlife photography.  The Canon’s Series-L lenses are a high quality, professional line especially made for APS-C cameras such as the 700D.  With no less than 15 lens elements and a fixed focal length, the picture quality for terrestrial imaging is fantastic, further assisted by a very accurate and quite image stabilizer.

This time I mounted the lens directly onto the tripod, with the camera further back so as to provide good balance between the two components.  As the autofocus and IS functions cannot be used in a dark sky for astrophotography, focus can be tricky and a compromise is required between the aperture setting for sharpness and a low ISO for quality.  As I discovered last time, the light quality diminishes significantly whilst the eclipse progresses across the face of the Moon and the aforesaid settings need to be constantly adjusted to compensate, especially during totality.  In the end I was pleased with the outcome of imaging the so-called Super Blood Wolf Moon (see mosaic above and image below).


As pleasing as imaging the eclipse is, like a solar eclipse viewing is an entirely different experience.  It is a pleasure to just watch the whole phenomena play out but the dramatic changes of light also has a profound effect on both the night sky itself and, in particular, the very nature of the Moon as perceived by the naked eye. On a clear night the full moon floods the night sky with its very bright light, thereby effectively hiding all but the very brightest of stars from view.  As the penumbral stage progresses (see diagram below) for about an hour the dark night sky is slowly revealed in all its glory, it’s as if someone has pulled the curtains and a new world has appeared.


Furthermore, as the moon darkens and eventually enters totality it takes on a completely different and eerie feeling, as well as a red hue caused by Raleigh scattering.  As is often the case with astrophotography the camera sensor is able to capture much greater colour and detail than the naked eye can see, thus producing beautiful images of one of nature’s best shows.  However, to the naked eye the moon takes on a different, somewhat strange nature during totality – something of a 3D effect occurs as it seems to float in the night sky like a big red balloon – something that an image cannot ever capture, making the night time adventure more exciting and worth all the effort.

Lunar eclipses are not that rare but we now have to wait 10-years for the next one in the UK which will take place on 20th December 2029, with or without cloud!

Object Lunar eclipse – Super Blood Wolf Moon
Distance <238,000 miles (30,000 miles closer than usual)
Size 31’or 1/2o  
Apparent Magnitude -12.74  @ mean full moon
Scope / Lens  Canon L-Series 300mm f/4
Mount Manfrotto tripod
Camera Canon 700D  
Capture & Processing Manual, Photoshop CS3- Extended
Exposures x50:  Penumbral f/8   1/125’   ISO 100     Totality f/5.6  0.80’   ISO 400    
Location & Darkness Fairvale Observatory – Redhill – Surrey – UK        Typically Bortle 5
Date & Time 21st January 2019 @ approx. 03.30h  
Weather <= 1oC   RH <=95%                  🌙   Eclipse

Reflections 2018

Reflections is a summary of my astronomy and astrophotography during the past year, plus some thoughts about what might happen in going forwards.  In some ways it’s a bit of a chore to compile but as it provides me with some perspective on what I’ve achieved year-to-year, I do find it to be a worthwhile exercise.

Watch This Space (Man) started in 2015 as a personal record of my astronomy journey. Notwithstanding, the blog has so far attracted 15,000 views from all over the world, including various locations in 64 countries over the past year (see map below for visitors in 2018).   I do like to hear from anybody out there – comments, questions, help or just to say hello  – and can be contacted via details in the ABOUT menu section or alternatively  just leave a comment on any item if you prefer.


WTSM Map 2018


I’m always tinkering with the website where apart from the main blog, there are also links to other astrophotographers, astronomy tools, astronomy weather, scientific papers etc.,  so even if you’re a regular visitor please take a look around from time-to-time.  Looking back I see I did not file any reports this year  under the new Astrobites section, on the other hand look out for more notable occasional image that now appears in the right-hand column under the heading Screenshot, which this year included: the Eskimo Nebula, Jupiter, the Moon & Jupiter in conjunction and Venus etc.         

Whilst there is a photo gallery of my work, for a more summary view of some of my better images there’s a FLICKR album link which is accessible from the GALLERY menu.  Following the change to mono imaging techniques in 2017, for reference each image is now accompanied by a detailed tabulation of the technical information; personally I find this information invaluable when looking at other astrophotographer’s images as a guide to settings and issues when imaging the same object myself for the first time.

Reflections Banner

Overview, Images & Goals for 2019

Since getting to grips with autoguiding in 2017, I’m pleased to say all the basic processes worked well throughout 2018, resulting in a marked improvement of individual image subs.  Long imaging times are difficult to achieve in the UK with poor skies being the norm but the successful adoption of Plate Solving this year marked a very significant breakthrough and holds great promise for ever longer integration times in the future.  Re-configuring the equipment and operating set-up in 2017 now enables operating from indoors most of the time, which apart from improving working conditions, has also made operating itself much more efficient.

I’m especially pleased that after more than 4-years astrophotography I finally manged to establish a new imaging location at the bottom of the garden this year, thereby for the first time enabling imaging of the north sky, literally opening up a new world!  For another perspective I was also fortunate to experience some excellent night skies in New Zealand, France and Cornwall during the year, which was great fun and led to some excellent images too (see 2018 CHRONICLE later in this blog).

Favourite Images

Apart from the odd DSLR shot of the night sky, my astrophotography at Fairvale Observatory in 2018 was entirely carried out with the ZWO1600MM-Cool mono CMOS sensor camera & EFW, combined with the William Optics GT81 scope, in both narrowband and broadband wavelengths.  The new camera has in every sense been a game changer and a lot more work but, in my opinion, the images this year show substantial improvement.  I also made progress using more complex processing techniques in Photoshop and improved colour and detail by combining Ha with LRGB or adding RGB and narrowband wavelengths.  With these advances I submitted a number of images to the British Astronomical Association which, I’m pleased to say, were chosen for publication on their website at various times throughout the year (see Astroimaging Record 2018 at end of blog for details).

A few of my personal favourites are shown below, in no particular order:


M74 Phantom Galaxy (HaLRGB)


Rosette Nebula (HaOO) 

M13 LRGB Close-up

M13 Great Globular Cluster of Hercules (LRGB) 

Sombrero Galaxy

M104 Sombrero Galaxy (LRGB)

HHOO hlvg (Large)

Heart Nebula (HaOO)

RGB2 GxFinalX (Large)

M45 Pleiades (LRGB)


Goal Specifics / Results Outcome
Improve broadband and narrowband imaging


Improved understanding and use of the ZWO1600MM-Cool mono camera leading to better subs.  Major breakthrough with Plate Solving enabling a significant increase in image integration times and overall quality. MUCH BETTER



Improve processing Continuing to make improvements and achieving noticeably better narrowband images but with more work to do in broadband. Much greater use of various Photoshop techniques is improving detail, colours and final quality. BETTER



Expand & Improve Widefield Imaging Despite some good images of the Milky Way in the UK and NZ I barely used the Vixen Polarie tracking mount and did not make it to any dark sky sites in the UK. FAILED



I think it helps to set new goals each year, so here goes for 2019:

  • Imaging: (i) There’s lots of scope to improve imaging techniques but probably most of all I now need to improve guiding quality and then increase exposure and image integration times further. (ii) Start mosaic imaging using Plate Solving.
  • Improve processing: Despite progress, I expect this will continue to be a major challenge for some time to come. Working with Olly Penrice in France and using Steve Richards’ new book Dark Art or Magic Bullet provided lots of opportunities to learn more but I’m still considering a move to new software for pre- and post-processing – we shall see.
  • Other: (i) Widefield imaging – Since acquiring the Vixen Polarie two years ago I’ve done little more than dabble in the occasional night sky shot. Maybe just set my sights lower this year and just see what happens! (ii) Do more observing – I had been thinking of getting something bigger like a Dob for observing whilst imaging is underway but frankly now thinking just do a bit more when I can with what I’ve got.  (iii) Notwithstanding weather issues at Les Granges observatory in France, get back to at least one good dark sky site next year.

I’m very pleased to say 2018 was again very good year for astrophotography, almost certainly my best yet, which was especially defined by two positive developments that are already transforming my astrophotography and hold further promise in 2019 (I said the same last year but it’s true):

  • Starting to Plate Solve has opened up whole new possibilities, in particular: Meridian flips and multiple imaging over different nights; Mosaic imaging.
  • Fairvale Observatory South – The ability to see and image the north sky from the new location expands imaging possibilities very significantly – should have done it sooner.

You can’t ask for more than that and hope that WTSM’s Reflections 2019 will record further such success.

Watch this space!

wtsm logo


Below is a quarter by quarter summary of my astronomy and astrophotography for the year 2018, followed by an imaging record.  It’s interesting but not surprising that I recorded about 50% less objects than in the previous year but, as explained, integration times have increased markedly – “never mind the width, feel the quality”!


The year started with a new perspective on astronomy – upside down!  A six week trip to New Zealand over the Christmas period produced some wonderful views of the night sky in the Southern Hemisphere. Using my basic DSLR and a GorillaPod, I was able to obtain some good images of the Milky Way, accompanied by the Large and Small Magellanic Clouds, which are unseen in the Northern Hemisphere.  New Zealand’s weather conditions and terrain also produced opportunities to see various noctilucent cloud formations, particularly on South Island (below).

IMG_9102 (Large)

Being Down Under for much of January I was unable to start astroimaging until February but it was worth the wait, which resulted in an excellent narrowband image of the Rosette Nebula with which to start the year .  From the experience and advice gained in 2017, in narrowband I now tend to stretch each Ha-OII-SII wavelength more aggressively prior to post-processing and, as a result, obtain better detail and contrast.  In this case the resulting HaOO version of the Rosette (see Favourite Images section above) was particularly good and for the first time was included on the British Astronomy Association’s website 🙂


Since obtaining the ZWO1600MM-Cool mono camera narrowband imaging has been nothing less than a revelation to me.  Whilst tone mapping using the Hubble Palette produces quite spectacular and colourful results, applying the aforementioned stretching to the just the stacked Ha-wavelength subs can often result in equally exciting black and white (grey) images which show exquisite detail.  One such image taken in March was the Cone Nebula, which showed the more extensive nature of the HII-region as well as the Cone and Fox Fur Nebulae (below).

Picture saved with settings embedded.

With the passing of winter’s narrowband targets by the end of February, I moved on to broadband imaging in March.  Of all the DSO features, I am perhaps most fascinated by globular clusters but had previously obtained mixed results with a DSLR camera.  Using the CMOS based ZWO1600 mono camera, I was now able to obtain much noticeably better colour and detail of these exciting but enigmatic objects (see Favourite Images section for M13 & below for M3).

M3 LRGB Crop (Large)

I can be put-off by some of the more technical requirements associated with astrophotography and, I‘m ashamed to say, that my approach is first to – ignore it, then maybe undertake some research but do nothing, then consciously put it off again and then, when there’s absolutely no alternative – give it a try.  I am not a technophobe, quite the opposite, but often find technology and the people who design and write about it unclear to the point of making no sense sometimes or at least misleading; it seems  somewhat paradoxical that I even got onto astrophotography given these issues! Notwithstanding, when I eventually summon the courage to tackle such problems, almost always I get it to work, eventually.  Such has been the case with Plate Solving this year.

With sight lines limited by houses, hedges and tall trees to the east, south and west, I’ve hitherto had to make do with average imaging windows of up to 2-hours, either to the east or west of the Meridian and depending on the object’s declination – a lower levels  the Meridian view is itself hidden by two tall trees, obscuring up to 30o vertically and 10o either side.  Naturally these constraints limit the image integration times severely, with an inevitable impact on the quality of images, notably with higher noise, less colour and detail.  The answer of course is plate solving and during February this year I finally bit the proverbial bullet.

Since changing to the ZWO 1600MM-Cool camera I have used Astro Photography Tool (APT) for image capture and camera control, with great success.  The software is quite comprehensive and it is excellent to use, though like most software can be a little idiosyncratic in places.  This is the point where I either give-up, try other software or, as is the case with APT, turn to their excellent product Forum.  Armed with the APT manual and answers from the Forum, I soon managed to plate solve and obtain images of the Leo Triplet over two consecutive nights, which subsequently aligned and stacked well – at last!


For the past year or more I’d been thinking about the possibility of moving the observatory to the end of the back garden during the spring and summer period, so as to provide a platform from which to view the northern sky, which as previously mentioned is otherwise completely obscured by my house.  The principal issue was how to operate the equipment some 30-metres away?  From the experience of others it seemed that both WiFi and Bluetooth can have big reliability issues and I am always keen to keep it simple, so for now I chose to try and use a long ethernet cable to link the operating / capture computer with a control computer indoors.

I had intended to set-up on the lawn but after I had recently extended the paving around a nearby shed in the corner of the garden, cut back some of the bushes and cleared out the shed it, was obvious that this was a preferable location; the paved base was more stable and provided a dry foundation on which to work but, furthermore, the adjacent shed could house the operating computer.  Despite successful tests indoors using an ethernet cable between the two computers and Teamviewer software, only when the equipment was set-up in position outside did I finally discover it no longer worked; I still don’t know why and the problem remains work in progress (when I can be bothered to look at it again).

Notwithstanding, it was obvious that I could instead comfortably operate the mount and camera myself from the shed and duly set about establishing what has now become Fairvale Observatory South or the Shed Observatory (see photos above); the principal observatory location by the house now becomes Fairvale Observatory North or Patio Observatory. Having established myself at the end of the garden with a not unreasonable view of the north sky over the roof of my house, I eagerly set about imaging some northern classics over the next few months.  Imaging in both narrowband and broadband I was pleased to obtain decent pictures of the Bode & Cigar galaxies and the Elephant’s Trunk Nebula before taking a break in June and July when there’s no astronomical darkness; I have imaged at this time of the year before but it’s sometimes good to take a break.

M81 B (Large)

My very first image of the northern sky M81 Bode & M82 Cigar Galaxies (LRGB)

Now I know the observatory works from this location, I plan to move there sooner in 2019 in order to spend more time with new set-up, hopefully improving on the aforementioned objects as well as trying new ones.  All-in-all the new location was a big success as well as being great fun.  Strangely I was surprised to find that the experience of guiding could be more demanding in the north sky but of course thinking about it more, as the views essentially centre on Polaris on which RA lines converge the tracking needs to be more extreme in order to move the same angular distance when compared to a southward view.  However, anxious not to upset the established settings too much, my set-up was shoddy and, as a result, guiding error was generally poor from this locality.  Next time I’ll pay more attention to this and hopefully achieve better guiding and subs.


After a break of nearly 8-weeks I was eager to get back to the ‘new’ observatory at the bottom of the garden.  Furthermore, much of the summer through into September was dominated by a heatwave which was accompanied by clear skies, night after night!  As a result I was able to get some very encouraging results of the Heart (see Favourite Images section above) and Soul Nebulae and finally, to my surprise, the unusual Bubble Nebula (see image below).

SHO2int3 (Large)


Needless to say, once back at Fairvale Observatory North the clouds rolled in and, furthermore, suitable objects for my equipment are initially sparse at this time of the year.  Since obtaining the ZWO1600MM-Cool camera I’ve concentrated on nebulae and narrowband imaging.  Though I’ve managed a few decent LRGB images, it’s fair to say that there’s room for improvement here and therefore finished the year on M33 the Triangulum Galaxy (see below) and subsequently M45 the Pleiades.  Despite being a good size for my scope it’s become clear to me that M33 is actually a tricky object and I was not satisfied with the final image – again better guiding and longer integration next time will almost certainly help.  However, Pleiades subsequently came out well (see Favourite Images section above) but the delicate interplay of the blue star light and interstellar dust does require careful post-processing.


As it was my birthday and it’s been something of an overdue trip since first conceived in 2015, I travelled to Olly Penrice’s Les Granges Observatory at the beginning of November.  It’s a great set-up and Olly was a real pleasure to work and learn from.  As a somewhat remote location in the Hautes-Alpes region of Provence, when it’s clear the SQM values at Les Granges can exceed 22 and for the first two nights we were able to image M74 the Phantom galaxy in HaLRGB under such conditions using his TEC 140, though following some rain during the day seeing conditions were mixed on the first night.

HaLRGB mosaic (Large)

Unfortunately the clouds had followed me from the UK and for the rest of the time there we were unable to image, though it did allow me to spend some useful and enjoyable time processing with Olly.  Other than processing the M74 image and learning some new techniques, using data previously acquired by Olly and with his help, I was able to compile a wonderful 9-panel HaLRGB widefield mosaic image of the North America Nebula and surrounding region (see above).


Notwithstanding the mixed weather conditions, I was able to obtain my first good, face-on image of a spiral galaxy (see Favourite Images section above), which with some additional subs from Olly’s previous sessions using an 14″ ODK scope turned into a truly spectacular image (see below) of this less than popular object.




No Date Type Object Name
1 Jan 2018 DSLR New Zealand


Milky Way, Lenticular Clouds etc. 
2 09/02/18 NB NGC 2244 Rosette Nebula
3 11/02/18 NB NGC 2264 Cone Nebula
4 11/02/18 BB M44 Beehive Cluster
5 11/02/18 NB Abell 21 Medusa Nebula
6 11/02/18 BB NGC 2392 Eskimo Nebula
7 24/02/18 NB IC 405 Flaming Star Nebula
8 24/02/18 BB Moon  
9 19/04/18 BB M65 + M66 Leo Triplet
10 05/05/18 BB M3 Globular Cluster
11 06/05/18 BB M104 Sombrero Galaxy
12 06/05/18 BB M13 Globular Cluster
13 18/05/18 * BB M81 & M82 Bodes & Cigar Galaxies
14 20/05/18 NB NGC 7822 Nebula
15 22/05/18 NB IC 1396 Elephant’s Trunk Nebula
17 16/08/18 * NB IC 1805 Heart Nebula
18 02/09/18 NB IC 1848 Soul Nebula
19 03/09/18 NB NGC 7635 Bubble Nebula
20 09/10/18 BB M33 Triangulum Galaxy
21 28/10/18 BB M33 Triangulum Galaxy
22 2/11/18 BB M74 Phantom Galaxy
23 17/11/18 BB M45 Pleiades
24 18/11/18 BB IC 2118 Witch’s Head Nebula

*multiple evenings                                            Underlined = BAA published